第36卷第2期2023年2月传感技术学报CHINESEJOURNALOFSENSORSANDACTUATORSVol.36No.2Feb.2023项目来源:浙江省基础公益研究计划项目(LGF21F020017)收稿日期:2022-04-12修改日期:2022-05-14ALightweightConvolutionalNeuralNetworkFallDetectionAlgorithmUsingInertialSensors*LIUPengda1,PANJulong1*,ZUOZhengwei2,ZHUHailiang1,LIYanli1(1.CollegeofInformationEngineering,ChinaJiliangUniversity,HangzhouZhejiang310018,China;2.ModernEducationTechnologyCenter,ChinaJiliangUniversity,HangzhouZhejiang310018,China)Abstract:Deployingatinymachinelearning(TinyML)modelinawearablefalldetectionterminalhasproblemssuchasweakcomputingpower,limitedmemory,andincompletemanualfeatureselectionthroughtraditionalmachinelearningalgorithms.Alightweightconvolu-tionalneuralnetworkfalldetectionalgorithmusinginertialsensersisproposed,andahigh-precisionwearablefalldetectionsystemisdesignedandimplemented.Thealgorithmautomaticallyextractsmorecompletedatafeaturesfromthefalldataandusesthedepthwiseseparableconvolutiontodecomposethestandardconvolutionintodepthwiseconvolutionandpointwiseconvolution.Withonly0.2%ofthefalldetectionaccuracylost,theamountoflayerparametersisreducedby75.32%,makingitmoresuitableforbeingdeployedinre-source-constrainedembeddedterminals.Theexperimentalresultsshowthatthealgorithmachievestheaverageaccuracy,sensitivityandspecificityof99.29%,98.00%and100.00%,respectively,intheactualfalltestenvironment.Comparedwithotheralgorithms,thisalgo-rithmnotonlyreducesthemodelsizeandcalculationamount,butalsoensuresthedetectionaccuracyoffalldetection.Thesuccessfuldevelopmentofthissystemprovidesanewwayforthefalldetectionandalarmoftheelderly.Keywords:falldetection;convolutionalneuralnetwork;TinyML;inertialsensors;deeplearningEEACC:7230doi:10.3969/j.issn.1004-1699.2023.02.013基于惯性传感器的轻量化卷积神经网络跌倒检测算法*刘鹏达1,潘巨龙1*,左正魏2,朱海亮1,李艳丽1(1.中国计量大学信息工程学院,浙江杭州310018;2.中国计量大学现代教育技术中心,浙江杭州310018)摘要:在可穿戴式跌倒检...