第47卷第4期电网技术Vol.47No.42023年4月PowerSystemTechnologyApr.2023文章编号:1000-3673(2023)04-1531-09中图分类号:TM721文献标志码:A学科代码:470·40低成本对抗性隐蔽虚假数据注入攻击及其检测方法黄冬梅1,丁仲辉2,胡安铎1,王晓亮3,时帅2(1.上海电力大学电子与信息工程学院,上海市浦东新区201306;2.上海电力大学电气工程学院,上海市杨浦区200090;3.国家海洋局东海信息中心,上海市浦东新区200136)Low-costAdversarialStealthyFalseDataInjectionAttackandDetectionMethodHUANGDongmei1,DINGZhonghui2,HUAnduo1,WANGXiaoliang3,SHIShuai2(1.CollegeofElectronicsandInformationEngineering,ShanghaiUniversityofElectricPower,PudongNewArea,Shanghai201306,China;2.CollegeofElectricalEngineering,ShanghaiUniversityofElectricPower,YangpuDistrict,Shanghai200090,China;3.EastSeaInformationCenter,StateOceanicAdministration,PudongNewArea,Shanghai200136,China)ABSTRACT:Powergridswithdeepcouplingsinthephysicalandinformativeaspectsfacethethreatoffalsedatainjectionattacks,whilethedeeplearningtechniquebecomesanimportantmethodfordetectingthefalsedatainjectionattacks.Toaddresstheproblemthatthedeepneuralnetworksarevulnerabletoadversarialattacks,alow-costadversarialtargetoptimalconcealedfalsedatainjectionattackstrategiesandthecorrespondingdetectionmethodsareproposedinthispaper.Theoptimalcombinationofmeasurementsandattackvaluearesolvedbyatwo-stageoptimizationtoobtaintheoptimalattackstrategywiththelowestattackcostfortheexpectedattacktarget.Theoptimalattackvalueisaddedwiththeadversarialperturbationbythewhite-boxattacksothatthedeeplearningmodelincorrectlyreportsitasanormalsample.Fromthedetectionperspective,allinitialattacksamplesinthehistoricaldatabaseareaddedwiththeadversarialperturbationandaremarkedastheattacksamplessothattheyarethenaddedtothetrainingsettotrainthemodelandimprovethedetectionperformance.ExperimentsareconductedontheIEEE14-nodesystemandtheIEEE118-nodesystemrespectivelytoverifytheeffectivenessoftheproposedattackanddetectionmethods.KEYWORDS:deeplearning;falsedatainjectionattack;adversarialattack;white...