第49卷第4期2023年4月ComputerEngineering计算机工程基于CSA-ResNet的人员入侵检测方法张雷1,2,鲍蓉1,朱永红1,史新国3(1.徐州工程学院信息工程学院(大数据学院),江苏徐州221000;2.东南大学移动通信国家重点实验室,南京210096;3.山东能源淄博矿业集团有限公司信息中心,山东淄博225100)摘要:视频监控作为最常用的监测方法,由于存在监控死角以及侵犯人员隐私等问题,存在许多应用瓶颈。针对视频监测无法用于敏感场景的问题,提出一种基于WiFi的人员入侵感知方法。该方法利用WiFi信号覆盖范围大、易获取的特点,实现无隐私侵犯与无死角监控。基于人员入侵对传输路径的影响,分析WiFi感知机理,建立基于WiFi状态信息的人员入侵检测感知模型,并设计子载波选择算法获取人员感知敏感子载波。通过离群点滤波、离散小波去噪等方法对采集的数据进行处理,根据人员入侵对信号的影响构造人员感知特征值。在此基础上,将特征信号和处理后的信道状态信息作为输入信息,放入基于通道和空间注意力残差网络的人员入侵检测模型中进行判识,并在多种场景下对该方法进行实验测试,分析影响检测精度的因素。实验结果表明,该方法在多种场景下平均检测准确率达到97.8%,能够满足多场景下人员入侵的检测要求。关键词:无线感知;子载波选择算法;人员入侵检测;信道状态信息;深度学习开放科学(资源服务)标志码(OSID):源代码链接:https://pan.baidu.com/s/1MU_i3W27C0apYIY2dhtW-A?pwd=um5i中文引用格式:张雷,鲍蓉,朱永红,等.基于CSA-ResNet的人员入侵检测方法[J].计算机工程,2023,49(4):297-302,311.英文引用格式:ZHANGL,BAOR,ZHUYH,etal.MethodfordetectingpersonnelintrusionbasedonCSA-ResNet[J].ComputerEngineering,2023,49(4):297-302,311.MethodforDetectingPersonnelIntrusionBasedonCSA-ResNetZHANGLei1,2,BAORong1,ZHUYonghong1,SHIXinguo3(1.SchoolofInformationEngineering(SchoolofBigData),XuzhouUniversityofTechnology,Xuzhou221000,Shandong,China;2.NationalMobileCommunicationsResearchKeyLaboratory,SoutheastUniversity,Nanjing210096,China;3.InformationCenter,ShandongEnergyZiboMiningGroupCo.,Ltd.,Zibo225100,Shandong,China)【Abstract】Videomonitoringisthemostwidelyusedmonitoringmethod,butithasmanyapplicationbottlenecksowingtoproblemssuchasmonitoringdea...