第41卷第1期2023年2月石河子大学学报(自然科学版)JournalofShiheziUniversity(NaturalScience)Vol.41No.1Feb.2023收稿日期:2022-03-03基金项目:兵团重点领域创新团队(2019CB006)作者简介:姚思雨(1998—),女,硕士研究生,专业研究方向为深度学习及图像处理,e⁃mail:yaosiyu@stu.shzu.edu.cn。∗通信作者:王磊(1983—),男,副教授,主要研究方向为机械制造、机械设计及理论方面,e⁃mail:wl_mac@shzu.edu.cn。DOI:10.13880/j.cnki.65-1174/n.2022.21.034文章编号:1007-7383(2023)01-0021-06基于CNN的棉田杂草识别方法姚思雨,王磊∗,张宏文(石河子大学机械电气工程学院,新疆石河子832003)摘要:针对杂草的精确喷洒问题提出一种基于卷积神经网络(ConvolutionNeuralNetwork,CNN)的棉花植株和杂草的检测识别方法。首先采集不同环境下棉田中棉花植株和不同种类的杂草图像作为网络模型的数据集,对数据集进行数据增强来增加数据集的数量,将其分为训练集与测试集;然后构建CNN模型,在模型中添加Dropout层,以防止网络出现过拟合,将训练集数据输入网络模型,使模型学习棉花植株和杂草的特征信息;最后将测试集数据输入CNN模型,测试CNN模型对棉花植株和杂草的识别能力。研究结果表明CNN对于棉花植株和杂草的分类结果精度超过了99.95%,识别时间为197.2s,证明CNN可以快速高效的识别棉田中棉花植株和杂草,为农业智能精确除草装备的研发提供研究基础。关键词:棉花植株;杂草识别;深度学习;卷积神经网络中图分类号:TP391.4文献标志码:AWeedidentificationmethodincottonfieldbasedonCNNYAOSiyu,WANGLei∗,ZHANGHongwen(CollegeofMechanicalandElectricalEngineering,ShiheziUniversity,Shihezi,Xinjiang832003,China)Abstract:Aimingattheproblemofaccurateweedspraying,acotto...