文章编号:1671-7872(2023)02-0158-08基于FTA−BN的混合动力汽车故障诊断策略万凌初1,牛礼民1,2,胡超1(1.安徽工业大学机械工程学院,安徽马鞍山243032;2.安徽工程大学电气传动与控制安徽省重点实验室,安徽芜湖241000)摘要:为实现对混合动力汽车(HEV)底盘系统多部件进行故障融合诊断,提出一种基于故障树分析和贝叶斯网络(FTA−BN)相结合的故障诊断策略。结合VB语言和SQLServer开源数据库平台设计HEV底盘故障诊断系统,基于构建的HEV底盘系统故障树模型,通过故障树与贝叶斯网络的映射关系将故障事件转换为网络节点,引入专家系统;依据混合模糊推理结合有界深度优先搜索方法,通过对故障征兆的定性和定量分析,基于FTA−BN计算故障事件的可信度,选择可信度高的原因作为诊断结论,且进行实验验证。结果表明:采用提出的FTA−BN故障诊断策略可对HEV底盘系统多部件进行故障融合诊断,故障诊断的准确率为0.850,高于人工经验判断的准确率(0.675)。关键词:混合动力汽车;故障诊断;专家系统;SQLServer;贝叶斯网络中图分类号:U469.79文献标志码:Adoi:10.12415/j.issn.1671−7872.22213FaultDiagnosisStrategyofHybridElectricVehicleBasedonFTA−BNWANLingchu1,NIULimin1,2,HUChao1(1.SchoolofMechanicalEngineering,AnhuiUniversityofTechnology,Maanshan243032,China;2.KeyLaboratoryofElectricDriveandControlofAnhuiProvince,AnhuiPolytechnicUniversity,Wuhu241000,China)Abstract:Torealizefaultfusiondiagnosisformultiplecomponentsofhybridelectricvehicle(HEV)chassissystem,afaultdiagnosisstrategybasedonfaulttreeanalysisandBayesiannetwork(FTA−BN)wasproposed.ThefaultdiagnosissystemofHEVchassiswasdesignedbasedonVBlanguageandSQLServeropensourcedatabaseplatform.BasedontheconstructedfaulttreemodelofHEVchassissystem,thefaulteventswereconvertedintonetworknodesthroughthemappingrelationshipbetweenfaulttreeandBayesiannetwork,andthefaulteventswereintroducedintotheexpertsystem.Basedonthemixedfuzzyreasoningandboundeddepthfirstsearchmethod,throughthequalitativeandquantitativeanalysisoffaultsymptoms,thereliabilityoffaulteventswascalculatedbasedonFTA−BN,andthecauseswithhighreliabilitywereselectedasthediagnosticconclusions,andtheexperimentalverificationwascarriedout.Theresultss...