温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
基坑
开挖
邻近
隧道
变形
影响
解析
方法
研究
马伟亮
第 19 卷第 2 期地 下 空 间 与 工 程 学 报Vol192023 年 4 月Chinese Journal of Underground Space and EngineeringApr2023基坑开挖对邻近隧道变形影响的解析方法研究马伟亮1,2,李顺群1,2,叶茂松3,黄雄飞3(1天津城建大学 土木工程学院 天津 300384;2天津城建大学 天津市软土特性与工程环境重点实验室,天津 300384;3 安徽水安建设集团股份有限公司,合肥 230601)摘要:随着城市地下空间工程建设的不断发展,在毗邻既有隧道处进行基坑工程施工已经成为常见的现象。基坑开挖会破坏原有地应力场,进而对邻近隧道产生影响,因此研究相应的应对措施是必要的。基于此,本文将隧道简化为作用在 Pasternak 地基上的 Timoshenko 梁,建立了基坑卸荷引起的隧道变形理论计算模型。以合肥大学城深基坑项目为工程案例,分别通过考虑小变形应变特性的 Plaxis 三维数值模型和理论模型进行计算,并将两个结果分别与现场实测数据进行对比分析。结果表明:模拟计算结果与实测结果基本吻合,最大位移偏差仅为06 mm,说明考虑小变形应变特性的本构模型可以很好反映土体应力和变形情况;本文提出的理论模型计算结果与实测结果十分吻合,且理论模型计算结果相比模拟结果更接近实测值,说明所提出的理论模型可以更准确有效地分析基坑开挖效应对侧卧地铁隧道的变形影响。关键词:基坑开挖;隧道变形;理论模型;数值模拟中图分类号:U456文献标识码:A文章编号:1673-0836(2023)02-0446-10Analysis on the Influence of Foundation Pit Excavation on the Deformationof Adjacent TunnelsMa Weiliang1,2,Li Shunqun1,2,Ye Maosong3,Huang Xiongfei3(1 School of Civil Engineering Tianjin 300384,P China;2 Tianjin Key Laboratory of Soft Soil Properties andEngineering Environment,Tianjin Chengjian University,Tianjin 300384,P China;3 Anhui Shuian Construction Group Co,Ltd,Hefei 230601,P China)Abstract:With the continuous development of urban underground space construction,it is a commonphenomenon to carry out foundation pit construction adjacent to existing tunnels Excavation of foundation pitwill destroy the original in-situ stress field,and then affect the adjacent tunnel,so it is necessary to study thecorresponding measures Based on this,this paper simplified the tunnel as Timoshenko beam acting on the Pasternakfoundation,and established the calculation model of tunnel deformation caused by excavation unloadingTaking the deep foundation pit project of Hefei University City as an engineering case,the Plaxis 3D numericalsimulation and theoretical model considering the characteristics of small deformation and strain were used forcalculation respectively,and the two results were compared with the field measured data The results show that thesimulation results of Plaxis are basically consistent with the measured results,and the maximum deviation is only 05 mm,indicating that the constitutive model considering the characteristics of small deformation and strain can wellreflect the stress and deformation of soil;In this paper,the calculated results considering the shear action ofthe tunnel are in good agreement with the measured results,and the calculated results of the analytical method收稿日期:2022-12-16(修改稿)作者简介:马伟亮(1995),男,安徽阜阳人,硕士生,主要从事基坑和地下隧道工程的研究。E-mail:maweiliang828 163com通讯作者:李顺群(1971),男,河南卫辉人,博士,教授,主要从事岩土工程等方面的研究。E-mail:lishunqun sinacom基金项目:国家自然科学基金(41877251);天津市科技支撑重点项目(19YFZCSF00820);安徽省住房城乡建设科学技术计划项目(2022-YF021,2022-YF152)are closer to the measured results than the simulation results,indicating that the proposed theoretical model can moreaccurately and effectively analyze the influence of the excavation effect on the deformation of the side-lyingmetro tunnelKeywords:foundation pit excavation;tunnel deformation;analytical calculation;numerical simulation0引言随着城市的不断开发,地下空间的利用越来越多,而地铁作为一个热门的城市交通工具越来越受人们的喜爱,城市地铁逐渐增加。与此同时,城市其他设施也在不断建设,深大基坑开挖越来越普遍,因此不可避免出现在已建地铁周围进行基坑工程施工。虽然基坑工程建设中支护结构也在不断优化加强,但基坑开挖依然避免不了改变周围土体的应力场和位移场,进而对周围的既有隧道产生影响,导致隧道产生相应的附加应力和变形。在一些大城市,基坑开挖引起地铁隧道应力或位移过大,进而导致的工程事故时有发生,严重威胁到人员伤亡和财产损失。因此研究基坑开挖对隧道的影响,并做出预测和评估,是一个急需要解决的问题1-3。国内外一些学者结合实际工程采用数值模拟进行分析研究4-7,但是数值模拟在计算时比较复杂,对于实际工程场景也无法完全复原进行模拟计算,另外一些采用模型试验的方法对隧道的位移进行研究8-10,而模型试验存在耗资大、周期长等缺点,还有一些学者采用理论计算的方法对隧道位移进行计算研究11-12,但理论计算需要对工程进行简化,因此理论计算也存在精度小、误差大等缺点。本文对基坑开挖引起的邻近隧道位移进行理论模型推导。以合肥大学城深基坑为工程案例,分别通过考虑小变形应变特性本构模型的 Plaxis 三维数值模拟和理论模型进行计算,将理论计算结果与实测结果以及数值模拟结果进行对比分析,验证理论公式的正确性。并对比理论模型计算结果和数值模拟计算结果,比较理论模型与数值模拟计算实际工程的精确性。1理论分析11建模思路和假定基坑开挖必然会对周围土体造成扰动,导致土体应力场和位移场发生改变,进而使周围隧道发生变形。通过 Timoshenko 梁模拟 Pasternak 地基上的隧道,建立了隧道变形的理论模型,进行如下假设:(1)地基土为均质各向同性;(2)隧道发生的是属于小变形;(3)隧道与周围土体接触紧密,不考虑隧道和地基土的界面滑移;(4)隧道的存在对隧道周围土体应力状态没有影响。12计算模型推导选取隧道一单元体进行分析,如图 1 所示。其中 q(x)为作用在隧道上的地基反力,Q、M 为单元体所受的剪力和弯矩,dx 为单元体的宽度,dM和 dQ 分别为弯矩和剪力沿着 dx 方向的增量,D 为盾构隧道外侧直径,Ta和 Tb分别为隧道两侧土体对隧道的剪切作用。图 1单元体受力图Fig1Unit body receptor graph单元体的静力平衡关系如下Q+Ta+Tb=Q+dQ+q(x)Ddx(1)M+(Q+dQ)dx+12q(x)D(dx)2=M+dM(2)隧道的变形模式如图 2 所示,其中隧道的最终位移 w(x)包括基坑开挖使得隧道产生的自由场位移 s(x)和地基土隧道相互作用产生的位移u(x),由于隧道与地基土紧密接触,因此隧道轴线处地基土的位移即为隧道位移,即w(x)=u(x)+s(x)(3)图 2隧道变形图Fig2Tunnel deformation diagram7442023 年第 2 期马伟亮,等:基坑开挖对邻近隧道变形影响的解析方法研究根据 Timoshenko 梁理论,梁在发生位移时,梁横截面也发生旋转。其中,内力与变形之间的关系为M=(EI)eqddx(4)Q=(GA)eqdwdx()(5)式中:M 和 Q 分别为弯矩和剪力;(EI)eq为隧道的等效弯曲刚度;(GA)eq为隧道的剪切刚度;为剪切系数;w 为梁中性轴的挠度;为梁截面的旋转角度。(EI)eq和(GA)eq计算13 如下:(EI)eq=ls(lslb)+lbEsIs=EsIs(6)(GA)eq=lslbnbGbAb+ls lbsGsAs(7)式中:为环向接头的旋转刚度系数;为考虑管环之间接触作用的修正系数;ls为衬砌管片环宽;lb为纵向连接栓的长度;为弯曲刚度缩减系数,=1/71/514;EsIs为混凝土衬砌管环的修正系数;b和 s分别为连接螺栓和管环的 Timoshenko 剪切系数,取 b=09、s=0515;n 为纵向连接螺栓数量,Gb和 Gs分别为连接螺栓和管环的剪切模量;Ab和 As分别为连接螺栓和管环的截面面积。p(x)=q(x)(8)其中 p(x)为隧道作用在地基上的力。根据Pasternak 地基理论得到p(x)=ku(x)Gcd2u(x)dx2(9)其中 k 和 Gc为 Pasternak 地基模型的 2 个参数;k 为地基反力系数;Gc为隧道剪切刚度。采用考虑隧道埋深效应的修正地基反力系数,计算如下k=308EcB(1 2)EcB4EI(10)=218hD 05()1+117h/DhD 05()(11)采用 Tanahashit16 提出的经验方法来估算 Gc的值,计算式为:Gc=Echt6(1+)(12)式中:Ec为地基土体的弹性模量;为土体的泊松比;h 是侧卧隧道的埋深;ht为弹性土层深度(隧道变形影响范围),采用