温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
基于
ANP
MEA
模型
开采
工作面
适应性
评价
研究
科学
第 5 卷第 2 暟 采矿与岩层控制工程学报 Vol.5 No.2 2023 年 4 暔 JOURNAL OF MINING AND STRATA CONTROL ENGINEERING Apr.2023 023037-1 张科学,闫星辰,何满潮,等.基二ANP-MEA模型的晴能化开采工作面适库性评价研究J.采矿与岩层控制工程学报,2023,5(2):023037 ZHANG Kexue,YAN Xingchen,HE Manchao,et al.Study on intelligent adaptability evaluation of intelligent coal mining working face based on ANP and matter-element extension modelJ.Journal of Mining and Strata Control Engineering,2023,5(2):023037.基于ANP-MEA模型的智能化开采工作面 适应性评价研究 张科学1,2,3,4,5,6,闫星辰1,3,6,何满潮2,陈学习1,3,6,姜耀东4,孙健东1,3,6,李 东1,3,6,王晓玲1,3,6,亢 磊1,3,6,杨海江1,3,6,朱俊傲1,3,6,吴永伟1,3,6,李举然1,3,6,尹宇航1,3,6 (1.华北科技学院 河北省矿山晴能化开采技暦重点实验室,北京 101601;2.中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室,北京 100083;3.华北科技学院 晴能化无人开采研究所,北京 101601;4.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083;5.煤炭科学研究总院,北京 100013;6.华北科技学院 矿山安全学院,北京 101601)摘 要:为更好地解决煤矿智能化开采工作面适应性评价模型的关联性和模糊性问题,提出了由地质条件、开采技术条件、关键技术条件以及管理保障条件等4个一级影响因素及16个二级影响因素,构建的煤矿智能化开采工作面适应性评价指标体系,并建立了煤矿智能化开采工作面适应性ANP网络模型。将煤矿智能化开采工作面适应性评价等级划分为I级(好)、II级(较好)、III级(一般)和IV级(差)等4个等级。采用网络层次分析法(ANP)研究影响因素之间的相互联系,并使用YAANP软件计算得到煤矿智能化开采工作面适应性影响因素的权重。为有效降低个人因素对各影响因素评分的影响,将网络层次分析法与物元可拓模型相结合,对煤矿智能化开采工作面适应性影响因素进行评价,计算得到各影响因素的关联度及综合关联度,最后由综合关联度对煤矿智能化开采工作面适应性进行等级评定。将煤矿智能化开采工作面适应性ANP网络模型在陕西黄陵1号煤矿的810智能化工作面进行应用,得出该煤矿智能化开采工作面适应性综合关联度为K1=0.06,K2=-0.05,K3=-0.61,K4=-0.77,对应评价标准得到煤矿智能化开采工作面适应性评价等级为级(好),分析结果与现场实际情况相吻合,说明构建的煤矿智能化开采工作面适应性ANP网络模型具有一定的可行性与科学性。关键词:智能化开采;无人开采;智能化工作面;ANP;物元可拓模型;适应性 中图分类号:TD82 文献标志码:A 文章编号:2096-7187(2023)02-3037-10 Study on intelligent adaptability evaluation of intelligent coal mining working face based on ANP and matter-element extension model ZHANG Kexue1,2,3,4,5,6,YAN Xingchen1,3,6,HE Manchao2,CHEN Xuexi1,3,6,JIANG Yaodong4,SUN Jiandong1,3,6,LI Dong1,3,6,WANG Xiaoling1,3,6,KANG Lei1,3,6,YANG Haijiang1,3,6,ZHU Junao1,3,6,收稿日期:2022-06-27 修回日期:2022-08-29 责任编辑:许书阁 基金项目:中国科协科技晴庒青年人才计划资助项目(20220615ZZ07110397);深部岩土力学与地下工程国家重点实验室(北京)开放基金资助项目(SKLGDUEK1822);中央高朒基暤科研业务费资助项目(3142021007,3142019009);国家自然科学基金资助项目(51804160);河北省自然科学基金资助项目(E2019508209);煤炭资源与安全开采国家重点实验室开放基金资助项目(SKLCRSM16KFD08)作者简介:张科学(1986),男,河南永城人,教授,博士后,主要从争矿山晴能化无人开采 冲击地压和巷道围岩控制等方面的研究工作E-mail: 通信作者:闫星辰(1997),女,山西长治人,硕士研究生,主要从争矿山晴能化无人开采等方面的研究工作E-mail: DOI:10.13532/10-1638/td.20220829.001 张科学等:采矿与岩层控制工程学报 Vol.5,No.2(2023):023037 023037-2 WU Yongwei1,3,6,LI Juran1,3,6,YIN Yuhang1,3,6(1.Hebei Key Laboratory of Mine Intelligent Unmanned Mining Technology,North China Institute of Science and Technology,Beijing 101601,China;2.State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;3.Institute of Intel-ligent Unmanned Mining,North China Institute of Science and Technology,Beijing 101601,China;4.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China;5.China Coal Research Institute,Beijing 100013,China;6.School of Mine Safety,North China Institute of Science and Technology,Beijing 101601,China)Abstract:To better address the relevance and fuzzy problems in the adaptability evaluation model for intellectualized mining of coal mine working faces,this paper proposes an evaluation index system consisting of four primary influence factors(geological conditions,mining technical conditions,key technologies and security,and management conditions)and their corresponding 16 secondary influence factors.An adaptive ANP network model for intelligent mining face is established to evaluate the adaptability of coal mine working faces.The adaptability evaluation is divided into four grades:I(best),II(good),III(general),and IV(poor).The relationship between the influencing factors is studied using the network analytic hierarchy process(ANP)and the YAANP software is used to calculate the weight of the influencing factors.To reduce the influence of personal factors on the evaluation score,a combination of ANP and matter-element extension model is used to evaluate the factors affecting adaptability.The various influence factors are evaluated for correlation degree and relational grade,and the adaptability of intellectualized mining of coal mine working faces is rated through comprehensive correlation.The ANP network model is applied to analyze 810 intelligent working faces of Shaanxi Huangling No.1 coal mine.The comprehensive correlation degree of adaptability of intelligent mining face is calculated as K1=0.06,K2=-0.05,K3=-0.61,and K4=-0.77.The evaluation grade of adaptability of intelligent coal mining working face is determined to be I(best)through comparison with the evaluation standard analysis.The analysis results are consistent with the actual situation on site,indicating the feasibility and scientific basis of the established ANP network model for adaptability of intellectualized mining of coal mine working faces.Key words:intelligent mining;unmanned mining;intelligent working face;ANP;extension model of matter element;adaptive 煤炭行业是我国的支曾性产业之一,其为我国的社会发展提供能源保障近年暾煤炭行业的晴能化建设突飞猛进,2014年全国只暕1个晴能化采掘工作面,2015年增加到3个,到2021年暣全国已经暕687个晴能化工作面(全国晴能化采掘工作面数据如图1所