1¿m~^£Ãþ5¥êÆ6]¿+Æcê£http://www.mathlover.cn/¤Jøe1êØÜ©1Ø1.½Âéuêa!b(b̸=0),3êq,÷va=bqÒaUbØ,Pb|a.Ù¥abê,baê(Ïê).eb̸=±1,Kbaýê.eaØUbØ,KPb∤a.XJat|b,at+1∤b,t∈N,Pat∥b.2.'uØ{ü5(1)b|0,±1|a,a|a(a̸=0).(2)eb|a,a̸=0,K1⩽|b|⩽|a|.(3)ec|b,b|a,Kc|a.(4)eb|a,c̸=0,Kbc|ac.(5)ec|a,c|b,Kc|(ma+nb)(m!n∈Z).(6)ek�i=1ai=0,bUØa1,a2,···,ak¥k−1,KbUØ,.2Ó{1.½Âmê,eêaÚbmØ{êÓ,K¡aÚbémÓ{,Pa≡b(modm).2.Ä5(1)a≡b(modm)⇔m|(b−a).(2)a≡b(modm)⇔b=km+a(k∈Z).(3)a≡a(modm).(4)ea≡b(modm),Kb≡a(modm).2(5)ea≡b(modm),b≡c(modm),Ka≡c(modm).(6)ea≡b(modm),c≡d(modm),Ka±c≡b±d(modm),ac≡bd(modm),an≡bn(modm).(7)eac≡bc(modm),(c,m)=d,Ka≡b(modmd).Ù¥ÎÒ(c,m)L«cmúê.AO/,�(c,m)=1,eac≡bc(modm),Ka≡b(modm).3.Ó{ad'umÓ{ê|¤8Ü,z8Ü'umÓ{a(½'um{a).du?ÛêmØ{êU´0,1,···,m−1ùm«/,¤±,ê8±UémÓ{'X©¤mf8:A0,A1,···,Am−1.Ù¥Ai={qm+i|m,q∈Z},i=0,1,···,m−1.¤kAi(i=0,1,···,m−1)÷vm−1�i=0Ai=Z,m−1�i=0Ai=∅.4.{XlîmmÓ{aA0,A1,···,Am−1¥,zaAiêai,Ka0,a1,···,am−1m{X({¡mX).{üm{X´0,1,···,m−1,m�KX.w,mUê�¤mX.3êÜê1.u1ê,XJk1Ú§§ê,ùêê(ê);XJØ1Ú§�kÙ¦ê,ùêÜê.1QØ´êØ´Üê.Ïd,ê8Z+={1}�{ê}�{Üê}.2.u1ê¤kýê¥,�ê½´ê.3.Üêa�êØu√a.4.êkáõ.5.Ø3ùXêõªf(n)=m�i=0aini,¦é?¿g,ên,f(n)Ñ´ê.6.%Ö(Wilson)½npê¿©7^´(p−1)!≡−1(modp).4Ïê©)1.Ïê©)½n(ê©)½n)3zu1êÑU©)¤Ïêë¦È/ª,
XJrùÏêUìd�^Sü(ÓÏê¦È¤/ª),ù«©){´.2.ên(n>1)IO©)ªn=m�i=1pαii.Ù¥piê,αiê,i=1,2,···,m.3.êê½nd(n)=�d|n1L«u1ên¤kêê,nIO©)ªn=m�i=1pαii,Kd(n)=m�i=1(1+αi).4.êÚ½nσ(n)=�d|ndL«u1ên¤kêÚ,nIO©)ªn=m�i=1pαii,Kσ(n)=m�i=1pαi+1i−1pi−1.5.3n!IO©)ª¥,Ïêp∞�r=1�npr�.Ù¥PÒ[x]L«ØLxê.5úêÚúê1.úêÚúê(1)ec|...