温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
内蒙古自治区
鄂尔多斯市
第一
中学
考前
热身
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,则向量与的夹角为( )
A. B. C. D.
2.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为( )
A.1 B.
C.2 D.3
3.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )
A. B. C. D.
4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )
A. B. C. D.
5.设,均为非零的平面向量,则“存在负数,使得”是“”的
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
6.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为
A. B.
C. D.
7.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:
若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )
A.324 B.522 C.535 D.578
8.函数f(x)=的图象大致为()
A. B.
C. D.
9.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:
卦名
符号
表示的二进制数
表示的十进制数
坤
000
0
震
001
1
坎
010
2
兑
011
3
依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )
A.18 B.17 C.16 D.15
11.在中,,,,点,分别在线段,上,且,,则( ).
A. B. C.4 D.9
12.已知集合,,,则的子集共有( )
A.个 B.个 C.个 D.个
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的定义域是___________.
14.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.
15.若函数在区间上有且仅有一个零点,则实数的取值范围有___________.
16.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.
(Ⅰ)求椭圆与椭圆的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.
18.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
19.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.
20.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.
21.(12分)已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
22.(10分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.
(1)求证:平面;
(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
求出,进而可求,即能求出向量夹角.
【题目详解】
解:由题意知,. 则
所以,则向量与的夹角为.
故选:C.
【答案点睛】
本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.
2、B
【答案解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.
【题目详解】
设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.
故选:B.
【答案点睛】
本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.
3、A
【答案解析】
由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为
故答案为A.
点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
4、B
【答案解析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.
【题目详解】
设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,
故选:B.
【答案点睛】
本题主要考查了枚举法求古典概型的方法,属于基础题型.
5、B
【答案解析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.
【题目详解】
因为,均为非零的平面向量,存在负数,使得,
所以向量,共线且方向相反,
所以,即充分性成立;
反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.
所以“存在负数,使得”是“”的充分不必要条件.
故选B.
【答案点睛】
判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.
6、A
【答案解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.
【题目详解】
画出所表示的区域,易知,
所以的面积为,
满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,
由几何概型的公式可得其概率为,
故选A项.
【答案点睛】
本题考查由约束条件画可行域,求几何概型,属于简单题.
7、D
【答案解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.
【题目详解】
从第6行第6列开始向右读取数据,编号内的数据依次为:
,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.
【答案点睛】
本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.
8、D
【答案解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.
【题目详解】
因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.
又f(2)==-<0.排除A,故选D.
【答案点睛】
本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.
9、D
【答案解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【题目详解】
,,对应点为,在第四象限.
故选:D.
【答案点睛】
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
10、B
【答案解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.
【题目详解】
由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.
故选:B.
【答案点睛】
本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.
11、B
【答案解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.
【题目详解】
根据题意,,则
在中,又,
则
则
则
则
故选:B
【答案点睛】
此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.
12、B
【答案解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.
【题目详解】
由题可知:,
当时,
当时,
当时,
当时,
所以集合
则
所以的子集共有
故选:B
【答案点睛】
本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.
【题目详解】
解:由题意得,
,解得,
所以,
故答案为:
【答案点睛】
此题考查函数定义域的求法,属于基础题.
14、1344
【答案解析】
分四种情况讨论即可
【题目详解】
解:数学排在第一节时有:
数学排在第二节时有:
数学排在第三节时有:
数学排在第四节时有:
所以共有1344种
故答案为:1344
【答案点睛】
考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.
15、或
【答案解析】
函数的零点方程的根,求出方程的两根为,,从而可得或,即或.
【题目详解】
函数在区间的零点方程在区间的根,所以,解得:,,
因为函数在区间上有且仅有一个零点,
所以或,即或.
【答案点睛】
本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.
16、20,21
【答案解析】
由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数