温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2011
全国
统一
高考
数学试卷
理科
新课
解析
2011 年全国统一高考数学试卷(理科)(新课标)年全国统一高考数学试卷(理科)(新课标)一、选择题(一、选择题(共共 12 小题,小题,每小题每小题 5 分,分,满分满分 60 分)分)1(5 分)复数的共轭复数是()A B Ci Di 2(5 分)下列函数中,既是偶函数又在(0,+)上单调递增的函数是()Ay=2x3 By=|x|+1 Cy=x2+4 Dy=2|x|3(5 分)执行如图的程序框图,如果输入的 N 是 6,那么输出的 p 是()A120 B720 C1440 D5040 4(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A B C D 5(5 分)已知角 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y=2x 上,则 cos2=()A B C D 6(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A B C D 7(5 分)设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C交于 A,B 两点,|AB|为 C 的实轴长的 2 倍,则 C 的离心率为()A B C2 D3 8(5 分)的展开式中各项系数的和为 2,则该展开式中常数项为()A40 B20 C20 D40 9(5 分)由曲线 y=,直线 y=x2 及 y 轴所围成的图形的面积为()A B4 C D6 10(5 分)已知 与 均为单位向量,其夹角为,有下列四个命题 P1:|+|10,);P2:|+|1(,;P3:|10,);P4:|1(,;其中的真命题是()AP1,P4 BP1,P3 CP2,P3 DP2,P4 11(5 分)设函数 f(x)=sin(x+)+cos(x+)的最小正周期为,且 f(x)=f(x),则()Af(x)在单调递减 Bf(x)在(,)单调递减 Cf(x)在(0,)单调递增 Df(x)在(,)单调递增 12(5 分)函数 y=的图象与函数 y=2sinx,(2x4)的图象所有交点的横坐标之和等于()A8 B6 C4 D2 二、填空题(二、填空题(共共 4 小题,小题,每小题每小题 5 分,分,满分满分 20 分)分)13(5 分)若变量 x,y 满足约束条件,则 z=x+2y 的最小值为 14(5 分)在平面直角坐标系 xOy,椭圆 C 的中心为原点,焦点 F1F2在 x 轴上,离心率为过 Fl的直线交于 A,B 两点,且ABF2的周长为 16,那么 C的方程为 15(5 分)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB=6,BC=2,则棱锥 OABCD 的体积为 16(5 分)在ABC 中,B=60,AC=,则 AB+2BC 的最大值为 三、解答题(三、解答题(共共 8 小题,小题,满分满分 70 分)分)17(12 分)等比数列an的各项均为正数,且 2a1+3a2=1,a32=9a2a6,()求数列an的通项公式;()设 bn=log3a1+log3a2+log3an,求数列的前 n 项和 18(12 分)如图,四棱锥 PABCD 中,底面 ABCD 为平行四边形,DAB=60,AB=2AD,PD底面 ABCD()证明:PABD;()若 PD=AD,求二面角 APBC 的余弦值 19(12 分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表 指标值分组 90,94)94,98)98,102)102,106)106,110 频数 8 20 42 22 8 B 配方的频数分布表 指标值分组 90,94)94,98)98,102)102,106)106,110 频数 4 12 42 32 10()分别估计用 A 配方,B 配方生产的产品的优质品率;()已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为 y=从用 B 配方生产的产品中任取一件,其利润记为 X(单位:元),求 X 的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20(12 分)在平面直角坐标系 xOy 中,已知点 A(0,1),B 点在直线 y=3上,M 点满足,=,M 点的轨迹为曲线 C()求 C 的方程;()P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距离的最小值 21(12 分)已知函数 f(x)=+,曲线 y=f(x)在点(1,f(1)处的切线方程为 x+2y3=0()求 a、b 的值;()如果当 x0,且 x1 时,f(x)+,求 k 的取值范围 22(10 分)如图,D,E 分别为ABC 的边 AB,AC 上的点,且不与ABC 的顶点重合已知 AE 的长为 m,AC 的长为 n,AD,AB 的长是关于 x 的方程x214x+mn=0 的两个根()证明:C,B,D,E 四点共圆;()若A=90,且 m=4,n=6,求 C,B,D,E 所在圆的半径 23在直角坐标系 xOy 中,曲线 C1的参数方程为(为参数)M是 C1上的动点,P 点满足=2,P 点的轨迹为曲线 C2()求 C2的方程;()在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线=与 C1的异于极点的交点为 A,与 C2的异于极点的交点为 B,求|AB|24设函数 f(x)=|xa|+3x,其中 a0()当 a=1 时,求不等式 f(x)3x+2 的解集()若不等式 f(x)0 的解集为x|x1,求 a 的值 2011 年全国统一高考数学试卷(理科)(新课标)年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析参考答案与试题解析 一、选择题(一、选择题(共共 12 小题,小题,每小题每小题 5 分,分,满分满分 60 分)分)1(5 分)复数的共轭复数是()A B Ci Di 【考点】A5:复数的运算菁优网版权所有【专题】11:计算题【分析】复数的分子、分母同乘分母的共轭复数,复数化简为 a+bi(a,bR)的形式,然后求出共轭复数,即可【解答】解:复数=i,它的共轭复数为:i 故选:C【点评】本题是基础题,考查复数代数形式的混合运算,共轭复数的概念,常考题型 2(5 分)下列函数中,既是偶函数又在(0,+)上单调递增的函数是()Ay=2x3 By=|x|+1 Cy=x2+4 Dy=2|x|【考点】3K:函数奇偶性的性质与判断菁优网版权所有【专题】11:计算题;51:函数的性质及应用【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+)上单调递增的函数【解答】解:对于 Ay=2x3,由 f(x)=2x3=f(x),为奇函数,故排除 A;对于 By=|x|+1,由 f(x)=|x|+1=f(x),为偶函数,当 x0 时,y=x+1,是增函数,故 B 正确;对于 Cy=x2+4,有 f(x)=f(x),是偶函数,但 x0 时为减函数,故排除 C;对于 Dy=2|x|,有 f(x)=f(x),是偶函数,当 x0 时,y=2x,为减函数,故排除 D 故选:B【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意定义的运用,以及函数的定义域,属于基础题和易错题 3(5 分)执行如图的程序框图,如果输入的 N 是 6,那么输出的 p 是()A120 B720 C1440 D5040 【考点】EF:程序框图菁优网版权所有【专题】5K:算法和程序框图【分析】执行程序框图,写出每次循环 p,k 的值,当 kN 不成立时输出 p 的值即可【解答】解:执行程序框图,有 N=6,k=1,p=1 P=1,kN 成立,有 k=2 P=2,kN 成立,有 k=3 P=6,kN 成立,有 k=4 P=24,kN 成立,有 k=5 P=120,kN 成立,有 k=6 P=720,kN 不成立,输出 p 的值为 720 故选:B【点评】本题主要考察了程序框图和算法,属于基础题 4(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A B C D 【考点】CB:古典概型及其概率计算公式菁优网版权所有【专题】5I:概率与统计【分析】本题是一个古典概型,试验发生包含的事件数是 33 种结果,满足条件的事件是这两位同学参加同一个兴趣小组有 3 种结果,根据古典概型概率公式得到结果【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是 33=9 种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有 3 种结果,根据古典概型概率公式得到 P=,故选:A【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目 5(5 分)已知角 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y=2x 上,则 cos2=()A B C D 【考点】GS:二倍角的三角函数;I5:直线的图象特征与倾斜角、斜率的关系菁优网版权所有【专题】11:计算题【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到 tan 的值,然后根据同角三角函数间的基本关系求出 cos 的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把 cos 的平方代入即可求出值【解答】解:根据题意可知:tan=2,所以 cos2=,则 cos2=2cos21=21=故选:B【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题 6(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A B C D 【考点】L7:简单空间图形的三视图菁优网版权所有【专题】13:作图题【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,侧视图是一个中间有分界线的三角形,故选:D【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题 7(5 分)设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C交于 A,B 两点,|AB|为 C 的实轴长的 2 倍,则 C 的离心率为()A B C2 D3 【考点】KC:双曲线的性质菁优网版权所有【专题】11:计算题【分析】不妨设双曲线 C:,焦点 F(c,0),由题设知,由此能够推导出 C 的离心率【解答】解:不妨设双曲线 C:,焦点 F(c,0),对称轴 y=0,由题设知,b2=2a2,c2a2=2a2,c2=3a2,e=故选:B【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用 8(5 分)的展开式中各项系数的和为 2,则该展开式中常数项为()A40 B20 C20 D40 【考点】DA:二项式定理菁优网版权所有【专题】11:计算题【分析】给 x 赋值 1 求出各项系数和,列出方程求出 a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数【解答】解:令二项式中的 x 为 1 得到展开式的各项系数和为 1+a 1+a=2 a=1=展开式中常数项为的的系数和 展开式的通项为 Tr+1=(1)r25rC5rx52r 令 52r=1 得 r=2;令 52r=1 得 r=3 展开式中常数项为 8C524C53=40 故选:D【点评】本题考查求系数和问题常用赋值法、考查利用二项展开式的通