温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
厦门市
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列的前项和为,若,,则数列的公差为( )
A. B. C. D.
2.若复数满足,则对应的点位于复平面的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知集合,则=( )
A. B. C. D.
4.已知,,,则的最小值为( )
A. B. C. D.
5.已知与之间的一组数据:
1
2
3
4
3.2
4.8
7.5
若关于的线性回归方程为,则的值为( )
A.1.5 B.2.5 C.3.5 D.4.5
6.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )
A. B. C. D.
7.复数的虚部是 ( )
A. B. C. D.
8.已知三棱锥且平面,其外接球体积为( )
A. B. C. D.
9.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )
A.400米 B.480米
C.520米 D.600米
10.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是( )
A.(0,1)∪(1,e) B.
C. D.(0,1)
11.已知平面向量满足与的夹角为,且,则实数的值为( )
A. B. C. D.
12.函数在上的图象大致为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
14. “六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.
15.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.
16.记为数列的前项和.若,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)椭圆:的离心率为,点 为椭圆上的一点.
(1)求椭圆的标准方程;
(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.
18.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)若,求直线AP与平面所成角;
(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.
19.(12分)已知正项数列的前项和.
(1)若数列为等比数列,求数列的公比的值;
(2)设正项数列的前项和为,若,且.
①求数列的通项公式;
②求证:.
20.(12分)设,,,.
(1)若的最小值为4,求的值;
(2)若,证明:或.
21.(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.
(1)写出曲线C的一般方程;
(2)求的最小值.
22.(10分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点
(1)求证:平面平面;
(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据等差数列公式直接计算得到答案.
【题目详解】
依题意,,故,故,故,故选:D.
【答案点睛】
本题考查了等差数列的计算,意在考查学生的计算能力.
2、D
【答案解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;
【题目详解】
,
对应的点,
对应的点位于复平面的第四象限.
故选:D.
【答案点睛】
本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.
3、D
【答案解析】
先求出集合A,B,再求集合B的补集,然后求
【题目详解】
,所以 .
故选:D
【答案点睛】
此题考查的是集合的并集、补集运算,属于基础题.
4、B
【答案解析】
,选B
5、D
【答案解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.
【题目详解】
利用表格中数据,可得
又,
.
解得
故选:D
【答案点睛】
本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.
6、B
【答案解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.
【题目详解】
由题意原几何体是正三棱柱,.
故选:B.
【答案点睛】
本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.
7、C
【答案解析】
因为 ,所以的虚部是 ,故选C.
8、A
【答案解析】
由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.
【题目详解】
由题,因为,所以,
设,则由,可得,解得,
可将三棱锥还原成如图所示的长方体,
则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,
所以外接球的体积.
故选:A
【答案点睛】
本题考查三棱锥的外接球体积,考查空间想象能力.
9、B
【答案解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.
【题目详解】
设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:
由题意可得,解得;
且满足,
故解得塔高米,即塔高约为480米.
故选:B
【答案点睛】
本题考查了对中国文化的理解与简单应用,属于基础题.
10、D
【答案解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.
【题目详解】
由题意,a>2,令t,
则f(x)=a⇔⇔
⇔⇔.
记g(t).
当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,
又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.
则⇔,
记h(t)(t>2且t≠2),
则h′(t).
令φ(t),则φ′(t)2.
∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.
∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,
则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.
由,可得,即a<2.
∴实数a的取值范围是(2,2).
故选:D.
【答案点睛】
此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.
11、D
【答案解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.
【题目详解】
依题意得
由,得
即,解得.
故选:.
【答案点睛】
本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.
12、C
【答案解析】
根据函数的奇偶性及函数在时的符号,即可求解.
【题目详解】
由可知函数为奇函数.
所以函数图象关于原点对称,排除选项A,B;
当时,,
,排除选项D,
故选:C.
【答案点睛】
本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.
【题目详解】
由PA⊥平面ABC,得PA⊥BC,
又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,
又PB⊥AE,则AE⊥平面PBC,
于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,
∴△AEF、△PEF均为直角三角形,由已知得AF=2,
而S△AEF=(AE2+EF2)=AF2=2,
当且仅当AE=EF=2时,取“=”,此时△AEF的面积最大,
三棱锥P﹣AEF的体积的最大值为:
VP﹣AEF===.
故答案为
【答案点睛】
本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题.
14、
【答案解析】
分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.
【题目详解】
第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.
故答案为:1.
【答案点睛】
本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.
15、
【答案解析】
代入求解得,再求准线方程即可.
【题目详解】
解:双曲线经过点,
,
解得,即.
又,故该双曲线的准线方程为: .
故答案为:.
【答案点睛】
本题主要考查了双曲线的准线方程求解,属于基础题.
16、1
【答案解析】
由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.
【题目详解】
由,得,.
且,
则,即.
数列是以16为首项,以为公比的等比数列,
则.
故答案为:1.
【答案点睛】
本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)证明见解析
【答案解析】
(1)运用离心率公式和点满足椭圆方程,解得,,进而得到椭圆方程;(2)设直线,代入椭圆方程,运用韦达定理和直线的斜率公式,以及点在直线上满足直线方程,化简整理,即可得到定值.
【题目详解】
(1)因为,所以, ①
又椭圆过点, 所以 ②
由①②,解得
所以椭圆的标准方程为 .
(2)证明 设直线:,
联立得,
设,