内容简介知识图谱是较为典型的多学科交叉领域,涉及知识工程、自然语言处理、机器学习、图数据库等多个领域。本书系统地介绍知识图谱涉及的关键技术,如知识建模、关系抽取、图存储、自动推理、图谱表示学习、语义搜索、知识问答、图挖掘分析等。此外,本书还尝试将学术前沿和实战结合,让读者在掌握实际应用能力的同时对前沿技术发展有所了解。本书既适合计算机和人工智能相关的研究人员阅读,又适合在企业一线从事技术和应用开发的人员学习,还可作为高等院校计算机或人工智能专业师生的参考教材。未经许可,不得以任何方式复制或抄袭本书之部分或全部内容。版权所有,侵权必究。图书在版编目(CIP)数据知识图谱:方法、实践与应用/王昊奋,漆桂林,陈华钧主编.—北京:电子工业出版社,2019.8ISBN978-7-121-36671-0Ⅰ.①知…Ⅱ.①王…②漆…③陈…Ⅲ.①知识管理Ⅳ.①G302中国版本图书馆CIP数据核字(2019)第100477号责任编辑:宋亚东印刷:三河市良远印务有限公司装订:三河市良远印务有限公司出版发行:电子工业出版社北京市海淀区万寿路173信箱邮编100036开本:787×9801/16印张:30字数:546千字版次:2019年8月第1版印次:2019年8月第1次印刷定价:118.00元凡所购买电子工业出版社图书有缺损问题,请向购买书店调换。若书店售缺,请与本社发行部联系,联系及邮购电话:(010)88254888,88258888。质量投诉请发邮件至zlts@phei.com.cn,盗版侵权举报请发邮件至dbqq@phei.com.cn。本书咨询联系方式:010-51260888-819,faq@phei.com.cn。序知识图谱是人工智能的一个分支,对可解释人工智能具有重要作用。近几年,随着知识表示和机器学习等技术的发展,知识图谱相关技术取得了突破性的进展,特别是知识图谱的构建、推理和计算技术以及知识服务技术,都得到了快速的发展。这些技术的进步使知识图谱在工业界受到了广泛关注,并取得了显著成果。谷歌、微软、百度等互联网公司率先构建了大规模通用知识图谱,提供基于实体和关系的语义搜索,可以更好地理解用户查询。知识图谱还在智能决策系统、推荐系统和智能问答系统中起到了重要作用。知识图谱不仅有巨大的应用价值,而且具有重要的理论价值。知识图谱使传统知识表示和推理技术有了落脚点,也为知识表示和推理带来了新的挑战。本书系统介绍了知识图谱的理论、技术及应用。在理论方面,本书全面介绍了知识图谱的各种表示方法,以及知识图谱的推理方法,这些方法是知识图谱的根基。在技术方面,...