温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
数学竞赛辅导01
有理数的巧算
数学
竞赛
辅导
01
有理数
第一讲 有理数的巧算
有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.
1.括号的使用
在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.
例1 计算:
分析 中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.
注意 在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.
例2 计算下式的值:
211×555+445×789+555×789+211×445.
分析 直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.
解 原式=(211×555+211×445)+(445×789+555×789)
=211×(555+445)+(445+555)×789
=211×1000+1000×789
=1000×(211+789)
=1 000 000.
说明 加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.
例3 计算:S=1-2+3-4+…+(-1)n+1·n.
分析 不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.
解 S=(1-2)+(3-4)+…+(-1)n+1·n.
下面需对n的奇偶性进行讨论:
当n为偶数时,上式是n/2个(-1)的和,所以有
当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有
例4 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
分析与解 因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.
现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然
n-(n+1)-(n+2)+(n+3)=0.
这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即
(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.
所以,所求最小非负数是1.
说明 本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.
2.用字母表示数
我们先来计算(100+2)×(100-2)的值:
(100+2)×(100-2)=100×100-2×100+2×100-4
=1002-22.
这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为
(a+b)(a-b)=a2-ab+ab-b2=a2-b2.
于是我们得到了一个重要的计算公式
(a+b)(a-b)=a2-b2, ①
这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.
例5 计算 3001×2999的值.
解 3001×2999=(3000+1)(3000-1)
=30002-12=8 999 999.
例6 计算 103×97×10 009的值.
解 原式=(100+3)(100-3)(10000+9)
=(1002-9)(1002+9)
=1004-92=99 999 919.
例7 计算:
分析与解 直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得
n2-(n2-12)=n2-n2+1=1,
即原式分母的值是1,所以原式=24 690.
例8 计算:
(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
分析 式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.
解 原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)=……
=(232-1)(232+1)
=264-1.
例9 计算:
分析 在前面的例题中,应用过公式
(a+b)(a-b)=a2-b2.
这个公式也可以反着使用,即
a2-b2=(a+b)(a-b).
本题就是一个例子.
通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.
例10 计算:
我们用一个字母表示它以简化计算.
3.观察算式找规律
例11 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.
87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
分析与解 若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为
90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)
+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)
+2+5+(-2)
=1800-1=1799,
平均分为 90+(-1)÷20=89.95.
例12 计算1+3+5+7+…+1997+1999的值.
分析 观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.
解 用字母S表示所求算式,即
S=1+3+5+…+1997+1999. ①
再将S各项倒过来写为
S=1999+1997+1995+…+3+1. ②
将①,②两式左右分别相加,得
2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)
=2000+2000+…+2000+2000(500个2000)
=2000×500.
从而有 S=500 000.
说明 一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.
例13 计算 1+5+52+53+…+599+5100的值.
分析 观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.
解 设
S=1+5+52+…+599+5100, ①
所以
5S=5+52+53+…+5100+5101. ②
②—①得
4S=5101-1,
说明 如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.
例14 计算:
分析 一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式
来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.
解 由于
所以
说明 本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.
练习一
1.计算下列各式的值:
(1)-1+3-5+7-9+11-…-1997+1999;
(2)11+12-13-14+15+16-17-18+…+99+100;
(3)1991×1999-1990×2000;
(4)4726342+472 6352-472 633×472 635-472 634×472 636;
(6)1+4+7+…+244;
2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.
81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.