温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
01
特殊
三角形
存在
问题
特殊三角形存在性问题
第1讲
Section 1 等腰三角形存在性问题
知识总结
【引例】如图,点A坐标为(1,1),点B坐标为(4,3),求x轴上一点C使得△ABC是等腰三角形.
【几何法】“两圆一线”
(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;
(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;
(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.
注意:若有重合的情况,则需排除.
以点为例,具体求点坐标:
过点A作AH⊥x轴交x轴于点H,则AH=1,
又,∴,
故点坐标为.
类似可求点、、.关于点考虑另一种方法.
【代数法】点-线-方程
表示点:设点坐标为,又A(1,1)、B(4,3),
表示线段:
联立方程:,解得:,
故点坐标为.
经典例题
【例1】如图,在平面直角坐标系中,二次函数交轴于点
、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标,若不存在请说明理由.
【例2】如图,已知二次函数的图像与轴相交于,
两点,与轴相交于点.
(1)求这个二次函数的表达式;
(2)若是第四象限内这个二次函数的图像上任意一点,轴于点,与线段交于点,连接.当是以为一腰的等腰三角形时,求点的坐标.
【例3】如图,直线与轴交于点,与轴交于点,抛物线经过,两点,与轴另一交点为.点以每秒个单位长度的速度在线段上由点向点运动(点不与点和点重合),设运动时间为秒,过点作轴垂线交轴于点,交抛物线于点.
(1)求抛物线的解析式;
(2)如图,连接交于点,当是等腰三角形时,直接写出的值.
Section 2 直角三角形存在性问题
知识总结
【引例】如图,在平面直角坐标系中,点A坐标为(1,1),点B坐标为(5,3),在x轴上找一点C使得△ABC是直角三角形,求点C坐标.
【几何法】“两线一圆”
(1)若∠A为直角,过点A作AB的垂线,与x轴的交点即为所求点C;
(2)若∠B为直角,过点B作AB的垂线,与x轴的交点即为所求点C;
(3)若∠C为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)
如何求得点坐标?以为例:构造三垂直.
求法相同,如下:
【代数法】点-线-方程
不妨来求下:
(1)表示点:设坐标为(m,0),又A(1,1)、B(5,3);
(2)表示线段:,,;
(3)分类讨论:当为直角时,;
(4)代入得方程:,解得:.
经典例题
【例4】如图,抛物线交轴于点和点,交轴于点.
(1)求这个抛物线的函数表达式.
(2)点的坐标为,点为第二象限内抛物线上的一个动点,求四边形面积的最大值.
(3)点为抛物线对称轴上的点,问:在抛物线上是否存在点,使为等腰直角三角形,且为直角?若存在,请直接写出点的坐标;若不存在,请说明理由.
【例5】如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点坐标.
【思】如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,点是该抛物线的顶点.
(1)求抛物线的解析式和直线的解析式;
(2)请在轴上找一点,使的周长最小,求出点的坐标;
(3)试探究:在拋物线上是否存在点,使以点,,为顶点,为直角边的三角形是直角三角形?若存在,请求出符合条件的点的坐标;若不存在,请说明理由.