分享
2022年全国统一高考理科数学解析(全国乙卷).docx
下载文档

ID:2347085

大小:1.38MB

页数:23页

格式:DOCX

时间:2023-05-08

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2022 全国 统一 高考 理科 数学 解析
绝密★启用前 2022年普通高等学校招生全国统一考试 数学(理科) 注意事项: 1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集,集合M满足,则( ) A. B. C. D. 【答案】A 【解析】 【分析】先写出集合,然后逐项验证即可 【详解】由题知,对比选项知,正确,错误 故选: 2. 已知,且,其中a,b为实数,则( ) A. B. C. D. 【答案】A 【解析】 【分析】先算出,再代入计算,实部与虚部都为零解方程组即可 【详解】 由,得,即 故选: 3. 已知向量满足,则( ) A. B. C. 1 D. 2 【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵, 又∵ ∴9, ∴ 故选:C. 4. 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( ) A. B. C. D. 【答案】D 【解析】 【分析】根据,再利用数列与的关系判断中各项的大小,即可求解. 【详解】解:因为, 所以,,得到, 同理,可得, 又因为, 故,; 以此类推,可得,,故A错误; ,故B错误; ,得,故C错误; ,得,故D正确. 故选:D. 5. 设F为抛物线的焦点,点A在C上,点,若,则( ) A. 2 B. C. 3 D. 【答案】B 【解析】 【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案. 【详解】由题意得,,则, 即点到准线的距离为2,所以点的横坐标为, 不妨设点在轴上方,代入得,, 所以 故选:B 6. 执行下边的程序框图,输出的( ) A. 3 B. 4 C. 5 D. 6 【答案】B 【解析】 【分析】根据框图循环计算即可. 【详解】执行第一次循环,, , ; 执行第二次循环,, , ; 执行第三次循环,, , ,此时输出. 故选:B 7. 在正方体中,E,F分别为的中点,则( ) A. 平面平面 B. 平面平面 C. 平面平面 D. 平面平面 【答案】A 【解析】 【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体中, 且平面, 又平面,所以, 因为分别为的中点, 所以,所以, 又, 所以平面, 又平面, 所以平面平面,故A正确; 如图,以点为原点,建立空间直角坐标系,设, 则, , 则,, 设平面的法向量为, 则有,可取, 同理可得平面的法向量为, 平面的法向量为, 平面的法向量为, 则, 所以平面与平面不垂直,故B错误; 因为与不平行, 所以平面与平面不平行,故C错误; 因为与不平行, 所以平面与平面不平行,故D错误, 故选:A. 8. 已知等比数列的前3项和为168,,则( ) A. 14 B. 12 C. 6 D. 3 【答案】D 【解析】 【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列的公比为, 若,则,与题意矛盾, 所以, 则,解得, 所以. 故选:D. 9. 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( ) A. B. C. D. 【答案】C 【解析】 【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值. 【详解】设该四棱锥底面四边形ABCD,四边形ABCD所在小圆半径为r, 设四边形ABCD对角线夹角为, 则 (当且仅当四边形ABCD为正方形时等号成立) 即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 又 则 当且仅当即时等号成立, 故选:C 10. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( ) A. p与该棋手和甲、乙、丙的比赛次序无关 B. 该棋手在第二盘与甲比赛,p最大 C. 该棋手在第二盘与乙比赛,p最大 D. 该棋手在第二盘与丙比赛,p最大 【答案】D 【解析】 【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率;该棋手在第二盘与丙比赛且连胜两盘的概率.并对三者进行比较即可解决 【详解】该棋手连胜两盘,则第二盘为必胜盘, 记该棋手在第二盘与甲比赛,且连胜两盘的概率为 则 记该棋手在第二盘与乙比赛,且连胜两盘的概率为 则 记该棋手在第二盘与丙比赛,且连胜两盘的概率为 则 则 即,, 则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误; 与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误. 故选:D 11. 双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( ) A. B. C. D. 【答案】C 【解析】 【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,可判断在双曲线的右支,设,,即可求出,,,在中由求出,再由正弦定理求出,,最后根据双曲线的定义得到,即可得解; 【详解】解:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为, 所以,因为,所以在双曲线的右支, 所以,,,设,, 由,即,则,,, 在中, , 由正弦定理得, 所以, 又, 所以,即, 所以双曲线的离心率 故选:C 12. 已知函数的定义域均为R,且.若的图像关于直线对称,,则( ) A. B. C. D. 【答案】D 【解析】 【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解. 【详解】因为的图像关于直线对称, 所以, 因为,所以,即, 因为,所以, 代入得,即, 所以, . 因为,所以,即,所以. 因,所以,又因为, 联立得,, 所以的图像关于点中心对称,因为函数的定义域为R, 所以 因为,所以. 所以. 故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题. 二、填空题:本题共4小题,每小题5分,共20分. 13. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________. 【答案】##0.3 【解析】 【分析】根据古典概型计算即可 【详解】从5名同学中随机选3名的方法数为 甲、乙都入选的方法数为,所以甲、乙都入选的概率 故答案为: 14. 过四点中的三点的一个圆的方程为____________. 【答案】或或或; 【解析】 【分析】设圆的方程为,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为, 若过,,,则,解得, 所以圆的方程为,即; 若过,,,则,解得, 所以圆的方程为,即; 若过,,,则,解得, 所以圆的方程为,即; 若过,,,则,解得, 所以圆的方程为,即; 故答案为:或或或; 15. 记函数的最小正周期为T,若,为的零点,则的最小值为____________. 【答案】 【解析】 【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解; 【详解】解: 因为,(,) 所以最小正周期,因为, 又,所以,即, 又为的零点,所以,解得, 因为,所以当时; 故答案为: 16. 已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________. 【答案】 【解析】 【分析】由分别是函数的极小值点和极大值点,可得时,,时,,再分和两种情况讨论,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,根据导数的结合意义结合图象即可得出答案. 【详解】解:, 因为分别是函数的极小值点和极大值点, 所以函数在和上递减,在上递增, 所以当时,,当时,, 若时, 当时,, 则此时,与前面矛盾, 故不符合题意, 若时, 则方程的两个根为, 即方程的两个根为, 即函数与函数的图象有两个不同的交点, 令,则, 设过原点且与函数的图象相切的直线的切点为, 则切线的斜率为, 故切线方程为, 则有, 解得, 则切线的斜率为, 因为函数与函数的图象有两个不同的交点, 所以,解得, 又,所以, 综上所述,的范围为. 【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度. 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. 记的内角的对边分别为,已知. (1)证明:; (2)若,求的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解. 【小问1详解】 证明:因为, 所以, 所以, 即, 所以; 【小问2详解】 解:因为, 由(1)得, 由余弦定理可得, 则, 所以, 故, 所以, 所以的周长为. 18. 如图,四面体中,,E为的中点. (1)证明:平面平面; (2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值. 【答案】(1)证明过程见解析 (2)与平面所成的角的正弦值为 【解析】 【分析】(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明; (2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. 【小问1详解】 因为,E为的中点,所以; 在和中,因为, 所以,所以,又因为E为的中点,所以; 又因为平面,,所以平面, 因为平面,所以平面平面. 【小问2详解】 连接,由(1)知,平面,因为平面, 所以,所以, 当时,最小,即的面积最小. 因为,所以, 又因为,所以是等边三角形, 因为E为的中点,所以,, 因为,所以, 在中,,所以. 以为坐标原点建立如图所示的空间直角坐标系, 则,所以, 设平面的一个法向量为, 则,取,则, 又因为,所以, 所以, 设与平面所成的角的正弦值为, 所以, 所以与平面所成的角的正弦值为. 19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开