温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2017
北京
高考
试题
答案
绝密★本科目考试启用前
2017年普通高等学校招生全国统一考试
数 学(理)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=
(A){x|–2x–1} (B){x|–2x3}
(C){x|–1x1} (D){x|1x3}
(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是
(A)(–∞,1) (B)(–∞,–1)
(C)(1,+∞) (D)(–1,+∞)
(3)执行如图所示的程序框图,输出的s值为
(A)2 (B) (C) (D)
(4)若x,y满足 则x + 2y的最大值为
(A)1 (B)3
(C)5 (D)9
(5)已知函数,则
(A)是奇函数,且在R上是增函数 (B)是偶函数,且在R上是增函数
(C)是奇函数,且在R上是减函数 (D)是偶函数,且在R上是减函数
(6)设m,n为非零向量,则“存在负数,使得”是“”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
(A)3 (B)2 (C)2 (D)2
(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是
(参考数据:lg3≈0.48)
(A)1033 (B)1053
(C)1073 (D)1093
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
(9)若双曲线的离心率为,则实数m=_________.
(10)若等差数列和等比数列满足a1=b1=–1,a4=b4=8,则=_______.
(11)在极坐标系中,点A在圆上,点P的坐标为(1,0),则|AP|的最小值为___________.
(12)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.
(13)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.
(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的学科&网零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)
在△ABC中, =60°,c=a.
(Ⅰ)求sinC的值;
(Ⅱ)若a=7,求△ABC的面积.
(16)(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
(17)(本小题13分)
为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.
(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(Ⅱ)从图中A,B,C,D四人中随机学科网.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();
(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
(18)(本小题14分)
已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
(19)(本小题13分)
已知函数f(x)=excosx−x.
(Ⅰ)求曲线y= f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)在区间[0,]上的最大值和最小值.
(20)(本小题13分)
设和是两个等差数列,记
,
其中表示这个数中最大的数.
(Ⅰ)若,,求的值,并证明是等差数列;
(Ⅱ)证明:或者对任意正数,存在正整数,当时,;或者存在正整数,使得是等差数列.