温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2010
广东省
深圳市
中考
数学试卷
解析
2010年广东省深圳市中考数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)﹣2的绝对值是( )
A.﹣2 B.﹣ C. D.2
2.(3分)为保护水资源,某社区新建了雨水再生水工程,再生水利用量达58600立方米/年.这个数据用科学记数法表示为( )
A.58×103 B.5.8×104 C.5.9×104 D.6.0×104
3.(3分)下列运算正确的是( )
A.(x﹣y)2=x2﹣y2 B.x2×y2=(xy)4
C.x2y+xy2=x3y3 D.x6÷x2=x4
4.(3分)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为( )
A. B.
C. D.
5.(3分)下列说法正确的是( )
A.“打开电视机,正在播世界杯足球赛”是必然事件
B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上
C.一组数据2,3,4,5,5,6的众数和中位数都是5
D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定
6.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
7.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为( )
A. B.
C. D.
8.(3分)观察下列算式,用你所发现的规律得出22015的末位数字是( )
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
A.2 B.4 C.6 D.8
9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )
A.40° B.35° C.25° D.20°
10.(3分)有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )
A. B. C. D.
11.(3分)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为( )
A.=+12 B.=﹣12
C.=﹣12 D.=+12
12.(3分)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )
A.y= B.y= C.y= D.y=
二、填空题(共4小题,每小题3分,满分12分)
13.(3分)分解因式:4x2﹣4= .
14.(3分)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE= .
15.(3分)如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是 个.
16.(3分)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行 分钟可使渔船到达离灯塔距离最近的位置.
三、解答题(共7小题,满分52分)
17.(6分)计算:2sin45°+(π﹣3.14)0++(﹣1)3.
18.(6分)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.
19.(7分)低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图和扇形统计图,图1中从左到右各长方形的高度之比为2:8:9:7:3:1.
(1)已知碳排放值5≤x<7(千克/平方米•月)的单位有16个,则此次行动共调查了 个单位;
(2)在图2中,碳排放值5≤x<7(千克/平方米•月)部分的圆心角为 度;
(3)小明把图1中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米•月)的被检单位一个月的碳排放总值约为 吨.
20.(7分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.
21.(8分)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).
(1)求M型服装的进价;
(2)求促销期间每天销售M型服装所获得的利润W的最大值.
22.(9分)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
23.(9分)如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
2010年广东省深圳市中考数学试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)﹣2的绝对值是( )
A.﹣2 B.﹣ C. D.2
【考点】15:绝对值.菁优网版权所有
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
【解答】解:∵﹣2<0,
∴|﹣2|=﹣(﹣2)=2.
故选:D.
【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.
2.(3分)为保护水资源,某社区新建了雨水再生水工程,再生水利用量达58600立方米/年.这个数据用科学记数法表示为( )
A.58×103 B.5.8×104 C.5.9×104 D.6.0×104
【考点】1L:科学记数法与有效数字.菁优网版权所有
【专题】12:应用题.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
【解答】解:58 600用科学记数法表示为5.86×104≈5.9×104.
故选:C.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3分)下列运算正确的是( )
A.(x﹣y)2=x2﹣y2 B.x2×y2=(xy)4
C.x2y+xy2=x3y3 D.x6÷x2=x4
【考点】4I:整式的混合运算.菁优网版权所有
【分析】A、利用完全平方公式即可判定;
B、利用单项式相乘的法则即可判定;
C、利用单项式加法法则即可判定;
D、利用单项式的除法即可判定.
【解答】解:A、(x﹣y)2=x2+y2﹣2xy,故选项错误;
B、x2×y2=(xy)2,故选项错误;
C、x2y+xy2≠x3y3,故选项错误;
D、x6÷x2=x4,故选项正确.
故选:D.
【点评】此题主要考查整式的运算,对于相关的法则和定义一定要熟练.
4.(3分)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为( )
A. B.
C. D.
【考点】E6:函数的图象.菁优网版权所有
【分析】根据横轴代表时间,纵轴代表高度,旗子的高度h(米)随时间t(分)的增长而变高来进行选择.
【解答】解:高度h将随时间的增长而变高,
故选:B.
【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.
5.(3分)下列说法正确的是( )
A.“打开电视机,正在播世界杯足球赛”是必然事件
B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上
C.一组数据2,3,4,5,5,6的众数和中位数都是5
D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定
【考点】W4:中位数;W5:众数;W7:方差;X1:随机事件;X3:概率的意义.菁优网版权所有
【分析】结合随机事件、概率的意义、众数、中位数、方差等概念一一判断,找到正确选项即可.
【解答】解:A、“打开电视机,正在播世界杯足球赛”是随机事件,故错误;
B、“掷一枚硬币正面朝上的概率是”表示在大量重复试验下,抛掷硬币正面朝上次数占一半,不是一定每抛掷硬币2次就有1次正面朝上,故错误;
C、中位数是4.5,故错误;
D、方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
故选:D.
【点评】用到的知识点为:随机事件是指在一定条件下,可能发生也可能不发生的事件;一组数据中出现次数最多的数为这组数据的众数;一组数据按顺序排列后,中间的那两个数的平均数或中间的那个数叫做中位数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
6.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
【考点】P3:轴对称图形;R5:中心对称图形.菁优网版权所有
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;
B、是轴对称图形,也是中心对称图形.故此选项错误;
C、是轴对称图形,不是中心对称图形.故此选项错误;
D、是轴对称图形,不是中心对称图形.故此选项错误.
故选:A.
【点评】此题主要考查了中心对称图形与轴对称图形的概念:
轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为( )
A.
B.
C.
D.
【考点】C4:在数轴上表示不等式的解集;D1:点的坐标.菁优网版权所有
【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.
【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,
则有
解得﹣2<a<1.
故选:C.
【点评】在数轴上表示