温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
同济大学
附中
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,以下结论正确的个数为( )
①当时,函数的图象的对称中心为;
②当时,函数在上为单调递减函数;
③若函数在上不单调,则;
④当时,在上的最大值为1.
A.1 B.2 C.3 D.4
2.已知,,,若,则正数可以为( )
A.4 B.23 C.8 D.17
3.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )
A. B.2 C. D.
4.已知定义在上的奇函数满足,且当时,,则( )
A.1 B.-1 C.2 D.-2
5.设,则
A. B. C. D.
6.若θ是第二象限角且sinθ =,则=
A. B. C. D.
7.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为
A. B.
C. D.
9.已知等差数列的前n项和为,,则
A.3 B.4 C.5 D.6
10.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )
A.45 B.60 C.75 D.100
11.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )
A. B. C. D.
12.已知等差数列中,,,则数列的前10项和( )
A.100 B.210 C.380 D.400
二、填空题:本题共4小题,每小题5分,共20分。
13.展开式的第5项的系数为_____.
14.已知是等比数列,且,,则__________,的最大值为__________.
15.函数过定点________.
16.已知等差数列的前n项和为,,,则=_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;
(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:
①点的极角;
②面积的取值范围.
18.(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,
(1)求的取值范围;
(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.
19.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.
(1)求的值:
(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.
20.(12分)如图,已知三棱柱中,与是全等的等边三角形.
(1)求证:;
(2)若,求二面角的余弦值.
21.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.
(1)满足有解三角形的序号组合有哪些?
(2)在(1)所有组合中任选一组,并求对应的面积.
(若所选条件出现多种可能,则按计算的第一种可能计分)
22.(10分)已知函数.
(1)若是的极值点,求的极大值;
(2)求实数的范围,使得恒成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.
【题目详解】
①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.
②由题意知.因为当时,,
又,所以在上恒成立,所以函数在上为单调递减函数,正确.
③由题意知,当时,,此时在上为增函数,不合题意,故.
令,解得.因为在上不单调,所以在上有解,
需,解得,正确.
④令,得.根据函数的单调性,在上的最大值只可能为或.
因为,,所以最大值为64,结论错误.
故选:C
【答案点睛】
本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.
2、C
【答案解析】
首先根据对数函数的性质求出的取值范围,再代入验证即可;
【题目详解】
解:∵,∴当时,满足,∴实数可以为8.
故选:C
【答案点睛】
本题考查对数函数的性质的应用,属于基础题.
3、D
【答案解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.
【题目详解】
解:在复平面内所对应的点在虚轴上,
,即.
故选D.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
4、B
【答案解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.
【题目详解】
∵是定义在R上的奇函数,且;
∴;
∴;
∴的周期为4;
∵时,;
∴由奇函数性质可得;
∴;
∴时,;
∴.
故选:B.
【答案点睛】
本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.
5、C
【答案解析】
分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.
详解:
,
则,故选c.
点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.
6、B
【答案解析】
由θ是第二象限角且sinθ =知:,.
所以.
7、B
【答案解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.
【题目详解】
因为时,所以,,所以复数在复平面内对应的点位于第二象限.
故选:B.
【答案点睛】
本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.
8、D
【答案解析】
设胡夫金字塔的底面边长为,由题可得,所以,
该金字塔的侧棱长为,
所以需要灯带的总长度约为,故选D.
9、C
【答案解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.
方法二:因为,所以,则.故选C.
10、B
【答案解析】
根据程序框图中程序的功能,可以列方程计算.
【题目详解】
由题意,.
故选:B.
【答案点睛】
本题考查程序框图,读懂程序的功能是解题关键.
11、B
【答案解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.
【题目详解】
函数
则函数的最大值为2,
存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即
故答案为:B.
【答案点睛】
这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.
12、B
【答案解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.
【题目详解】
设公差为,,,
,
.
故选:B.
【答案点睛】
本题考查等差数列的基本量计算以及前项和,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、70
【答案解析】
根据二项式定理的通项公式,可得结果.
【题目详解】
由题可知:第5项为
故第5项的的系数为
故答案为:70.
【答案点睛】
本题考查的是二项式定理,属基础题。
14、5
【答案解析】
,即的最大值为
15、
【答案解析】
令,,与参数无关,即可得到定点.
【题目详解】
由指数函数的性质,可得,函数值与参数无关,
所有过定点.
故答案为:
【答案点睛】
此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.
16、
【答案解析】
利用求出公差,结合等差数列的通项公式可求.
【题目详解】
设公差为,因为,所以,即.
所以.
故答案为:
【答案点睛】
本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②
【答案解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.
(2)
①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.
②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.
解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.
【题目详解】
(1)因为曲线的参数方程为(为参数),
因为则曲线的参数方程
所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.
所以的极坐标方程为,即.
(2)①点的极角为,代入直线的极坐标方程得点
极径为,且,所以为等腰三角形,
又直线的普通方程为,
又点的极角为锐角,所以,所以,
所以点的极角为.
②解法1:直线的普通方程为.
曲线上的点到直线的距离
.
当,即()时,
取到最小值为.
当,即()时,
取到最大值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
解法2:直线的普通方程为.
因为圆的半径为2,且圆心到直线的距离,
因为,所以圆与直线相离.
所以圆上的点到直线的距离最大值为,
最小值为.
所以面积的最大值为;
所以面积的最小值为;
故面积的取值范围.
【答案点睛】
本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考