温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
青海省
海东市
重点中学
第二次
调研
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.学业水平测试成绩按照考生原始成绩从高到低分为、、、、五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )
A.物理化学等级都是的学生至多有人
B.物理化学等级都是的学生至少有人
C.这两科只有一科等级为且最高等级为的学生至多有人
D.这两科只有一科等级为且最高等级为的学生至少有人
2.在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )
A. B. C.1 D.
3.已知函数,,若成立,则的最小值是( )
A. B. C. D.
4.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为
A.72 B.64 C.48 D.32
5.若,,则的值为( )
A. B. C. D.
6.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是( )
A.且 B.且 C.且 D.且
7.已知函数,若函数的所有零点依次记为,且,则( )
A. B. C. D.
8.已知为虚数单位,若复数,则
A. B.
C. D.
9.已知不同直线、与不同平面、,且,,则下列说法中正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10.要得到函数的图象,只需将函数的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
11.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )
A. B.
C. D.
12.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( )
A.2014年我国入境游客万人次最少
B.后4年我国入境游客万人次呈逐渐增加趋势
C.这6年我国入境游客万人次的中位数大于13340万人次
D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若向量与向量平行,则实数___________.
14.已知函数,则关于的不等式的解集为_______.
15.设满足约束条件,则目标函数的最小值为_.
16.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)若曲线在点处的切线方程为,求,;
(2)当时,,求实数的取值范围.
18.(12分)如图1,四边形是边长为2的菱形,,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.
(1)证明:平面平面;
(2)求点到平面的距离.
19.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
20.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.
(1)求椭圆E的方程;
(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.
21.(12分)已知函数,其中.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)设.若在上恒成立,求实数的最大值.
22.(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.
【题目详解】
根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),
表格变为:
物理
化学
对于A选项,物理化学等级都是的学生至多有人,A选项错误;
对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;
对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,
因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),
C选项错误;
对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.
故选:D.
【答案点睛】
本题考查合情推理,考查推理能力,属于中等题.
2、B
【答案解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;
【题目详解】
解:因为,
所以
因为
所以
,即,,
时
故选:
【答案点睛】
本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.
3、A
【答案解析】
分析:设,则,把用表示,然后令,由导数求得的最小值.
详解:设,则,,,
∴,令,
则,,∴是上的增函数,
又,∴当时,,当时,,
即在上单调递减,在上单调递增,是极小值也是最小值,
,∴的最小值是.
故选A.
点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.
4、B
【答案解析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
【题目详解】
由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,
所以几何体的体积为,故选B。
【答案点睛】
本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。
5、A
【答案解析】
取,得到,取,则,计算得到答案.
【题目详解】
取,得到;取,则.
故.
故选:.
【答案点睛】
本题考查了二项式定理的应用,取和是解题的关键.
6、B
【答案解析】
由且可得,故选B.
7、C
【答案解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.
【题目详解】
令,得,即对称轴为.
函数周期,令,可得.则函数在上有8条对称轴.
根据正弦函数的性质可知,
将以上各式相加得:
故选:C.
【答案点睛】
本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.
8、B
【答案解析】
因为,所以,故选B.
9、C
【答案解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.
【题目详解】
对于,若,则可能为平行或异面直线,错误;
对于,若,则可能为平行、相交或异面直线,错误;
对于,若,且,由面面垂直的判定定理可知,正确;
对于,若,只有当垂直于的交线时才有,错误.
故选:.
【答案点睛】
本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.
10、D
【答案解析】
直接根据三角函数的图象平移规则得出正确的结论即可;
【题目详解】
解:函数,
要得到函数的图象,
只需将函数的图象向左平移个单位.
故选:D.
【答案点睛】
本题考查三角函数图象平移的应用问题,属于基础题.
11、C
【答案解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.
【题目详解】
解:因为,即,又,
设,根据条件,,;
若,,且,则:;
在上是减函数;
;
;
在上是增函数;
所以,
故选:C
【答案点睛】
考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.
12、D
【答案解析】
ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.
【题目详解】
A.由统计图可知:2014年入境游客万人次最少,故正确;
B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;
C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;
D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.
故选:D.
【答案点睛】
本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题可得,因为向量与向量平行,所以,解得.
14、
【答案解析】
判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.
【题目详解】
令,易知函数为奇函数,在R上单调递增,
,
即,
∴
∴,即x>
故答案为:
【答案点睛】
本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.
15、
【答案解析】
根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.
【题目详解】
由满足约束条件,画出可行域如图所示阴影部分:
将目标函数,转化为,
平移直线,找到直线在轴上截距最小时的点
此时,目标函数 取得最小值,最小值为
故答案为:-1
【答案点睛】
本题主要考查线性规划求