分享
深度学习R语言实践指南_(美)托威赫·贝索洛(TawehBeysolowII)著;潘怡译.pdf
下载文档

ID:2334466

大小:38.08MB

页数:227页

格式:PDF

时间:2023-05-07

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
深度学习 R语言实践指南_美托威赫·贝索洛TawehBeysolowII著;潘怡译 深度 学习 语言 实践 指南 威赫 贝索洛 TawehBeysolowII 潘怡译
华章THZBOOKS Information Technology卫THE TRANSLATORS WORDS译者序2013年,MIT Technology Review杂志将深度学习列为年度十大突破性技术之首。作为当下热门的科技领域之一,深度学习在诸如无人驾驶、社交平台上的图像识别、智能翻译等领域相继取得了突破性的进展,无论是在工业界还是在学术界均引起了广泛关注,并源源不断地涌现出了许多丰富而有益的创造。但不可否认的是,由于对该领域知识的匮乏,即使是专家也可能在特定情况下因使用一些比较差劲的工具而得到糟糕的结果,更不用说深度学习的初学者。因此,本书的初衷是通过对机器学习、深度学习基本概念和基础理论的介绍及实际案例的讲解,帮助读者了解相关技术的用途,并能有效地将它们应用于各自的工作中。本书共11章,内容主要涉及:深度学习的数学理论基础,包括重要的统计学和线性代数的相关基本概念和知识;深度学习的各种典型模型,例如传统的单层感知器模型、多层感知器模型,以及卷积神经网络、循环神经网络、受限玻耳兹曼机、深度信念网络等一些更为复杂的模型;构建深度学习模型的实验设计方法以及实验过程中的特征选择方法;应用R语言进行机器学习和深度学习实践的案例,通过这些案例,读者可以增强学习机器学习和深度学习的信心,提高对实际问题的解决能力。感谢翻译过程中华章公司张梦玲编辑的鼓励与督促,感谢家人和朋友们一如既往的支持和鼓励。尽管此前译者已经翻译完成了两本R语言与机器学习领域的专业书籍,但由于深度学习技术是一个快速发展的方向,新的模型和应用层出不穷,使得本书的翻译工作比预期要艰难许多,兼之本人学识有限以及中英文语言表达、术语翻译上的习惯,书中难免存在错误,还请广大读者指正与原谅。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开