温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
甘肃省
白银
实验
中学
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设、分别是定义在上的奇函数和偶函数,且,则( )
A. B.0 C.1 D.3
2.设,满足约束条件,则的最大值是( )
A. B. C. D.
3.已知非零向量,满足,,则与的夹角为( )
A. B. C. D.
4.( )
A. B. C. D.
5.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为( )
A.3 B.2 C.1 D.0
6.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()
A. B.
C. D.
7.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )
A.1 B. C.2 D.
8.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
9.已知函数在区间有三个零点,,,且,若,则的最小正周期为( )
A. B. C. D.
10.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )
A. B. C. D.
11.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )
A. B. C. D.
12.已知集合A,则集合( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知在等差数列中,,,前n项和为,则________.
14.已知数列满足,则________.
15.已知复数(为虚数单位),则的共轭复数是_____,_____.
16.如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,,,若,则的取值范围是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.
(1)求抛物线的标准方程;
(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.
18.(12分)已知关于的不等式解集为().
(1)求正数的值;
(2)设,且,求证:.
19.(12分)已知函数(,),且对任意,都有.
(Ⅰ)用含的表达式表示;
(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;
(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.
20.(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,
(1)求的取值范围;
(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.
21.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.
(1)若在区间上是闭函数,求常数的值;
(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.
22.(10分)已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)若在上恒成立,求实数的取值范围;
(Ⅲ)若数列的前项和,,求证:数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
先根据奇偶性,求出的解析式,令,即可求出。
【题目详解】
因为、分别是定义在上的奇函数和偶函数,,用替换,得 ,
化简得,即
令,所以,故选C。
【答案点睛】
本题主要考查函数性质奇偶性的应用。
2、D
【答案解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.
【题目详解】
作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.
由得:,
故选:D
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.
3、B
【答案解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.
【题目详解】
根据平面向量数量积的垂直关系可得,
,
所以,即,
由平面向量数量积定义可得,
所以,而,
即与的夹角为.
故选:B
【答案点睛】
本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.
4、B
【答案解析】
利用复数代数形式的乘除运算化简得答案.
【题目详解】
.
故选B.
【答案点睛】
本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
5、C
【答案解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.
【题目详解】
①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;
③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.
故选:.
【答案点睛】
本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.
6、B
【答案解析】
根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.
【题目详解】
解:已知函数,其中,,其图像关于直线对称,
对满足的,,有,∴.
再根据其图像关于直线对称,可得,.
∴,∴.
将函数的图像向左平移个单位长度得到函数的图像.
令,求得,
则函数的单调递减区间是,,
故选B.
【答案点睛】
本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.
7、B
【答案解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.
【题目详解】
可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).
故选:B.
【答案点睛】
本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.
8、A
【答案解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【题目详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【答案点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.
9、C
【答案解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.
【题目详解】
解:由于在区间有三个零点,,,
当时,,
∴由对称轴可知,满足,
即.
同理,满足,即,
∴,,
所以最小正周期为:.
故选:C.
【答案点睛】
本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.
10、B
【答案解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.
【题目详解】
解:函数,,
为的零点,为图象的对称轴,
,且,、,,即为奇数①.
在,单调,,②.
由①②可得的最大值为1.
当时,由为图象的对称轴,可得,,
故有,,满足为的零点,
同时也满足满足在上单调,
故为的最大值,
故选:B.
【答案点睛】
本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.
11、B
【答案解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.
【题目详解】
解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,
其和等于16的结果,共2种等可能的结果,
故概率.
故选:B.
【答案点睛】
古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.
12、A
【答案解析】
化简集合,,按交集定义,即可求解.
【题目详解】
集合,
,则.
故选:A.
【答案点睛】
本题考查集合间的运算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、39
【答案解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.
【题目详解】
设等差数列公差为d,首项为,根据题意可得,解得,所以.
故答案为:39
【答案点睛】
本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.
14、
【答案解析】
项和转化可得,讨论是否满足,分段表示即得解
【题目详解】
当时,由已知,可得,
∵,①
故,②
由①-②得,
∴.
显然当时不满足上式,
∴
故答案为:
【答案点睛】
本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.
15、
【答案解析】
直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模.
【题目详解】
,则复数的共轭复数为,且.
故答案为:;.
【答案点睛】
本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.
16、
【答案解析】
由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果.
【题目详解】
设,,,则,
由,得,代入椭圆方程,
得,化简得恒成立,
由此得,即,故.
故答案为:
【答案点睛】
此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)
(2)
【答案解析】
(1)先分别表示出,然后根据求解出的值,则的标准方程可求;
(2)设出直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.
【题目详解】
(1)由题意可得,焦点,,则
,,
∴解得.
抛物线的标准方程为
(2)设,设点,,显然直线的斜率不为0.
设直线的方程为
联立方程,整理可得
,,
∴,
∴
要使为定值,必有,解得,
∴为定值时,点的坐标为
【答案点睛】
本题考查抛物线方程的求解以及抛物线中的定值问题,难度一