温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
面向
溢油
污染
治理
SiO_2
凝胶
疏水
改性
研究进展
韩松
面向溢油污染治理的 SiO2气凝胶疏水改性的研究进展韩松1),张添华1,2),肖龙恒1),郭敏1),张梅1)1)北京科技大学冶金与生态工程学院,北京1000832)中冶建筑研究总院有限公司,北京100088通信作者,E-mail:摘要二氧化硅气凝胶(Silicaaerogel,SA)具有高孔隙率、低密度、高比表面积等特性,可成为一种良好的吸油材料,然而亲水表面和珍珠项链的结构限制了其在吸油领域的广泛应用.疏水改性后的疏水 SiO2气凝胶(Hydrophobicsilicaaerogel,HSA)不仅具有 SA 的优异特性,而且疏水/亲油性好,是一种优异的轻质吸油材料.本文以表面后处理法和共前驱体法制备HSA 为主线,系统介绍了这两种方法结合超临界干燥和常压干燥制备 HSA 的研究进展,分析总结了两种方法的优缺点.其中,共前驱体法主要结合超临界干燥工艺制备 HSA,表面后处理法则常结合常压干燥,两种方法主要都采用硅烷化剂为疏水改性剂.表面后处理法改性不改变已形成的孔隙结构,HSA 的孔径和粒径比较均匀,但可能存在内部改性不彻底的问题.共前驱体法在凝胶结构形成的同时完成改性,制备的 HSA 比表面积更大,疏水性更好,但是其孔径不均匀,引入的疏水基团有限.此外,本文还综述了目前常用的提高 HSA 机械性能的方法以及 HSA 吸油性能的研究进展.最后,立足于当前 HSA 用作吸油材料发展的趋势,对 HSA 吸油材料朝着开发低成本且环境友好的原料、开发周期短的疏水改性流程、制备大块体 HSA、提高 HSA 的机械性能以及提高其吸油性能等发展方向进行了展望.关键词SiO2气凝胶;表面后处理法;共前驱体法;常压干燥;机械性能;吸油分类号TH145.1+1;TB383ResearchprogressofhydrophobicmodificationofsilicaaerogelforoilspillpollutiontreatmentHAN Song1),ZHANG Tian-hua1,2),XIAO Long-heng1),GUO Min1),ZHANG Mei1)1)SchoolofMetallurgicalandEcologicalEngineering,UniversityofScience&TechnologyBeijing,Beijing100083,China2)CentralResearchInstituteofBuildingandConstructionCo.,Ltd,MCCGroup,Beijing100088,ChinaCorrespondingauthor,E-mail:ABSTRACTOilspillpollutionseriouslyendangershumanandecosystemhealth.Therefore,itisurgenttodevelopoil-absorbingmaterialstoeffectivelyremoveoilspillpollution.Amongthetraditionaloil-absorbingmaterials,naturalorganicadsorptionmaterialhaslowoilabsorptioncapacityandhydrophilicity;inorganicadsorptionmaterialsaredifficulttorecoverandhavelowoilabsorptionefficiencyandhighprice;andalthoughthesyntheticorganicadsorbenthasoutstandingoilabsorptioncapacity,itsbiodegradationispoor.Silicaaerogel(SA)hasthecharacteristicsofhighporosity,lowdensity,andhighspecificsurfacearea,whichmakeitanexcellentoil-absorbing material.However,the hydrophilic surface and pearl necklace structure of SA limit its wide applications in the oilabsorptionfield.Hydrophobicallymodifiedhydrophobicsilicaaerogel(HSA)hasnotonlyexcellentSAcharacteristicsbutalsogoodhydrophobic/lipophilicproperties.Inthispaper,focusingonHSApreparationbysurfaceposttreatmentmodificationandcoprecursormodification,the research progress on these two methods combined with supercritical drying and ambient pressure drying issystematicallyintroduced,andtheadvantagesanddisadvantagesofthetwomethodsareanalyzedandsummarized.Thecoprecursor收稿日期:20220503基金项目:国家自然科学基金资助项目(U21A20321,51972019);国家重点研发计划资助项目(2020YFB0606205)工程科学学报,第45卷,第6期:949966,2023年6月ChineseJournalofEngineering,Vol.45,No.6:949966,June2023https:/doi.org/10.13374/j.issn2095-9389.2022.05.03.002;http:/modificationismainlycombinedwithasupercriticaldryingprocesstoprepareHSA,whilethesurfaceposttreatmentmodificationisoftencombinedwithanambientpressuredryingprocess.Bothmethodsnormallyusesilylatingagentsashydrophobicmodifiers.Thesurfaceposttreatmentmodificationdoesnotchangetheformedporestructure,andtheporesizeandparticlesizeofHSAarerelativelyuniform.However,themodificationprocessofsurfaceposttreatmentislong,thesolventconsumptionislarge,andthecostishigh.Inaddition,incompleteinternalmodificationmaybeaproblem.Inthecoprecursormodificationmethod,wetgelisformedandmodifiedsimultaneously,shorteningthemodificationtimeandsavingcosts.ThepreparedHSAofcoprecursormodificationhasalargerspecificsurfaceareaandbetterhydrophobicity,butitsporesizeisuneven,andtheintroducedhydrophobicgroupsarelimited.ExcessivesilylatingagentsaffectthesolgelprocessofHSA.Inaddition,thecurrentmethodsforstrengtheningHSAmechanicalpropertiesandtheresearchprogressonHSAoilabsorptionpropertiesarereviewed.Finally,basedonthecurrentdevelopmentofHSAasoil-absorbingmaterials,thedevelopmentdirectionofthesematerialsisdiscussed,forexample,developinglow-costandeco-friendlyrawmaterials,shorteningthehydrophobicmodificationprocess,preparingbulkHSA,strengtheningthemechanicalproperties,andimprovingtheoil-absorbingpropertiesofHSA.KEY WORDSsilica aerogel;surface posttreatment modification;coprecursor modification;ambient pressure drying;mechanicalproperties;oilabsorption化合物缩写目录本文所用到的化合物缩写名称如下表所示.文中所用到的化合物缩写名称表ListofabbreviatednamesofcompoundsusedinthispaperFullnameAbbreviationFullnameAbbreviationTetramethoxysilane(正硅酸甲酯)TMOSPolydiethyloxysiloxane(聚二乙氧基硅氧烷)PDEOSTetraethoxysilane(正硅酸四乙酯)TEOSIsopropanol(异丙醇)IPADimethyldichlorosilane(二甲基二氯硅烷)DMDCSPhenyltriethoxysilane(苯基三乙氧基硅烷)PTESDimethylchlorosilane(二甲基氯硅烷)DMCSHexamethyldisilazane(六甲基二硅氮烷)HMDZTrimethylchlorosilane(三甲基氯硅烷)TMCSHexamethyldisiloxane(六甲基二硅氧烷)HMDSOTrimethylmethoxysilane(三甲基甲氧基硅烷)TMMSN.N-dimethylformamide(N,N-二甲基甲酰胺)DMFTrimethylethoxysilane(三甲基乙氧基硅烷)TMES3-(trimethoxysilylpropyl)methacrylate3-(三甲氧基硅基丙基)甲基丙烯酸酯TMSPMMethyltriethoxysilane(甲基三乙氧基硅烷)MTES2,5-divinyltrimethoxysilane(2,5-二乙烯基三甲氧基硅烷)DVTHPMethyltrimethoxysilane(甲基三甲氧基硅烷)MTMS3-methylpropenyloxypropyltrimethoxysilane(3-甲基丙烯氧基丙基三甲氧基硅烷)MEMOEthyltrimethoxysilane(乙基三甲氧基硅烷)ETMS3-glycidyloxypropyltrimethoxysilane(3-缩水甘油氧基丙基三甲氧基硅烷)GLYMOEthyltriethoxysilane(乙基三乙氧基硅烷)ETESDodecyltrimethoxysilane(十二烷基三甲氧基硅烷)DTMSPropyltrimethoxysilane(丙基三甲氧基硅烷)PTMS石油开采、加工和运输过程中的石油泄漏污染严重危害了人类和生态系统的健康1.例如,墨西哥湾的石油泄漏,是历史上最大的原油泄漏事故,约有 49