温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
惠安
一中
三校高三
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数满足:当时,,且对任意,都有,则( )
A.0 B.1 C.-1 D.
2.已知集合,,若,则的最小值为( )
A.1 B.2 C.3 D.4
3.已知函数满足,设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为( )
A.50cm B.40cm C.50cm D.20cm
5.若实数满足不等式组则的最小值等于( )
A. B. C. D.
6.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则
A. B. C. D.
7.已知空间两不同直线、,两不同平面,,下列命题正确的是( )
A.若且,则 B.若且,则
C.若且,则 D.若不垂直于,且,则不垂直于
8.定义,已知函数,,则函数的最小值为( )
A. B. C. D.
9.已知,函数在区间上恰有个极值点,则正实数的取值范围为( )
A. B. C. D.
10.已知向量,,当时,( )
A. B. C. D.
11.设是虚数单位,,,则( )
A. B. C.1 D.2
12.若直线的倾斜角为,则的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为
14.已知,则展开式的系数为__________.
15.记为数列的前项和,若,则__________.
16.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)等差数列的公差为2, 分别等于等比数列的第2项,第3项,第4项.
(1)求数列和的通项公式;
(2)若数列满足,求数列的前2020项的和.
18.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.
(1)求证:;
(2)若平面平面,求二面角的余弦值.
19.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
20.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若,求实数的值.
21.(12分)已知函数.
(1)求函数的零点;
(2)设函数的图象与函数的图象交于,两点,求证:;
(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
22.(10分)已知点,且,满足条件的点的轨迹为曲线.
(1)求曲线的方程;
(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由题意可知,代入函数表达式即可得解.
【题目详解】
由可知函数是周期为4的函数,
.
故选:C.
【答案点睛】
本题考查了分段函数和函数周期的应用,属于基础题.
2、B
【答案解析】
解出,分别代入选项中 的值进行验证.
【题目详解】
解:,.当 时,,此时不成立.
当 时,,此时成立,符合题意.
故选:B.
【答案点睛】
本题考查了不等式的解法,考查了集合的关系.
3、B
【答案解析】
结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.
【题目详解】
解:若,则,即成立,
若,则由,得,
则“”是“”的必要不充分条件,
故选:B.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.
4、D
【答案解析】
过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.
【题目详解】
过点做正方形边的垂线,如图,
设,则,,
则
,
因为,则,
整理化简得,又,
得 ,
.
即该正方形的边长为.
故选:D.
【答案点睛】
本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.
5、A
【答案解析】
首先画出可行域,利用目标函数的几何意义求的最小值.
【题目详解】
解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)
由得,
由得,平移,
易知过点时直线在上截距最小,
所以.
故选:A.
【答案点睛】
本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.
6、B
【答案解析】
由题意知,,由,知,由此能求出.
【题目详解】
由题意知,,
,解得,
,
.
故选:B.
【答案点睛】
本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.
7、C
【答案解析】
因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.
8、A
【答案解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.
【题目详解】
依题意得,,则,
(当且仅当,即时“”成立.此时,,,的最小值为,
故选:A.
【答案点睛】
本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.
9、B
【答案解析】
先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.
【题目详解】
解:
令,解得对称轴,,
又函数在区间恰有个极值点,只需
解得.
故选:.
【答案点睛】
本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.
(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.
10、A
【答案解析】
根据向量的坐标运算,求出,,即可求解.
【题目详解】
,
.
故选:A.
【答案点睛】
本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.
11、C
【答案解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.
【题目详解】
解:,
,解得:.
故选:C.
【答案点睛】
本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.
12、B
【答案解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.
【题目详解】
由于直线的倾斜角为,所以,
则
故答案选B
【答案点睛】
本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据向量共线定理得A,B,C三点共线,再根据点斜式得结果
【题目详解】
因为,且α+β=1,所以A,B,C三点共线,
因此点C的轨迹为直线AB:
【答案点睛】
本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.
14、
【答案解析】
先根据定积分求出的值,再用二项展开式公式即可求解.
【题目详解】
因为
所以
的通项公式为
当时,
当时,
故展开式中的系数为
故答案为:
【答案点睛】
此题考查定积分公式,二项展开式公式等知识点,属于简单题目.
15、-254
【答案解析】
利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.
【题目详解】
由已知,得,即,所以
又,即,,所以是以-4为首项,2为公比的等比数
列,所以,即,所以。
故答案为:
【答案点睛】
本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.
16、.
【答案解析】
分析:由题意结合古典概型计算公式即可求得题中的概率值.
详解:由题意可知了,比赛可能的方法有种,
其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,
田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,
结合古典概型公式可得,田忌的马获胜的概率为.
点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),; (2).
【答案解析】
(1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式;
(2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和.
【题目详解】
(1)依题意得: ,
所以 ,
所以
解得
设等比数列的公比为,所以
又
(2)由(1)知,
因为 ①
当时, ②
由①②得,,即,
又当时,不满足上式,
.
数列的前2020项的和
设 ③,
则 ④,
由③④得:
,
所以,
所以.
【答案点睛】
本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学