温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
辽宁省
抚顺市
第十
中学
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数满足,则( )
A. B. C. D.
2.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是( )
A.该年第一季度GDP增速由高到低排位第3的是山东省
B.与去年同期相比,该年第一季度的GDP总量实现了增长
C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个
D.去年同期浙江省的GDP总量超过了4500亿元
3.设复数满足(为虚数单位),则在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.等比数列若则( )
A.±6 B.6 C.-6 D.
5.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )
A. B. C. D.
6.数列满足:,则数列前项的和为
A. B. C. D.
7.已知椭圆内有一条以点为中点的弦,则直线的方程为( )
A. B.
C. D.
8.已知函数,若,且 ,则的取值范围为( )
A. B. C. D.
9.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为( )
A. B.
C. D.
10.下列不等式正确的是( )
A. B.
C. D.
11.已知,,分别为内角,,的对边,,,的面积为,则( )
A. B.4 C.5 D.
12.已知,满足,且的最大值是最小值的4倍,则的值是( )
A.4 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等比数列的前项和为,若,则的值是 .
14.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.
15.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
16.设,则“”是“”的__________条件.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.
18.(12分)已知函数,且.
(1)若,求的最小值,并求此时的值;
(2)若,求证:.
19.(12分)已知函数.
(1)讨论的单调性;
(2)若函数在区间上的最小值为,求m的值.
20.(12分)有最大值,且最大值大于.
(1)求的取值范围;
(2)当时,有两个零点,证明:.
(参考数据:)
21.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.
(1)若选择生产线①,求生产成本恰好为18万元的概率;
(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.
22.(10分)已知f(x)=|x +3|-|x-2|
(1)求函数f(x)的最大值m;
(2)正数a,b,c满足a +2b +3c=m,求证:
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由复数的运算法则计算.
【题目详解】
因为,所以
故选:A.
【答案点睛】
本题考查复数的运算.属于简单题.
2、D
【答案解析】
根据折线图、柱形图的性质,对选项逐一判断即可.
【题目详解】
由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的
省份有江苏均第一.河南均第四.共2个.故C项正确;.
故D项不正确.
故选:D.
【答案点睛】
本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.
3、A
【答案解析】
由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.
【题目详解】
由得:,
对应的点的坐标为,位于第一象限.
故选:.
【答案点睛】
本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.
4、B
【答案解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.
【题目详解】
由等比数列中等比中项性质可知,,
所以,
而由等比数列性质可知奇数项符号相同,所以,
故选:B.
【答案点睛】
本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.
5、D
【答案解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.
【题目详解】
由题,得,
因为的图象与直线的两个相邻交点的距离等于,
所以函数的最小正周期,则,
所以,
当时,,
所以是函数的一条对称轴,
故选:D
【答案点睛】
本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.
6、A
【答案解析】
分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.
详解:∵,∴,
又∵=5,
∴,即,
∴,
∴数列前项的和为,
故选A.
点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
7、C
【答案解析】
设,,则,,相减得到,解得答案.
【题目详解】
设,,设直线斜率为,则,,
相减得到:,的中点为,
即,故,直线的方程为:.
故选:.
【答案点睛】
本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.
8、A
【答案解析】
分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.
详解:作出函数的图象,如图所示,若,且,
则当时,得,即,
则满足,
则,即,则,
设,则,
当,解得,当,解得,
当时,函数取得最小值,
当时,;
当时,,
所以,即的取值范围是,故选A.
点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.
9、A
【答案解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.
【题目详解】
依题意如图所示:
取的中点,则是等腰梯形外接圆的圆心,
取是的外心,作平面平面,
则是四棱锥的外接球球心,且,
设四棱锥的外接球半径为,则,而,
所以,
故选:A.
【答案点睛】
本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.
10、D
【答案解析】
根据,利用排除法,即可求解.
【题目详解】
由,
可排除A、B、C选项,
又由,
所以.
故选D.
【答案点睛】
本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.
11、D
【答案解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.
【题目详解】
解:,即
,即.
,则.
,解得.
,
故选:D.
【答案点睛】
本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.
12、D
【答案解析】
试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.
考点:线性规划.
二、填空题:本题共4小题,每小题5分,共20分。
13、-2
【答案解析】
试题分析:,
考点:等比数列性质及求和公式
14、
【答案解析】
设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.
【题目详解】
解:设,
由双曲线的定义得出:
,
,
由图可知:,
又,
即,
则,
为等腰三角形,
,
设,
,则,
,
即,解得:,
则,
,解得:,
,解得:,
,
在中,由余弦定理得:
,
即:,
解得: ,即.
故答案为:.
【答案点睛】
本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.
15、130. 15.
【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.
【题目详解】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
【答案点睛】
本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.
16、充分必要
【答案解析】
根据充分条件和必要条件的定义可判断两者之间的条件关系.
【题目详解】
当时,有,故“”是“”的充分条件.
当时,有,故“”是“”的必要条件.
故“”是“”的充分必要条件,
故答案为:充分必要.
【答案点睛】
本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对