温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
甘肃省
天水市
第二
中学
最后
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等比数列中,,则与的等比中项是( )
A.±4 B.4 C. D.
2.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )
A.在点F的运动过程中,存在EF//BC1
B.在点M的运动过程中,不存在B1M⊥AE
C.四面体EMAC的体积为定值
D.四面体FA1C1B的体积不为定值
3.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )
A.7 B.15 C.31 D.63
4.已知函数,下列结论不正确的是( )
A.的图像关于点中心对称 B.既是奇函数,又是周期函数
C.的图像关于直线对称 D.的最大值是
5.在中,点D是线段BC上任意一点,,,则( )
A. B.-2 C. D.2
6.已知,复数,,且为实数,则( )
A. B. C.3 D.-3
7.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为( )
A.2 B. C. D.
8.某四棱锥的三视图如图所示,则该四棱锥的体积为( )
A. B. C. D.
9.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )
A. B. C. D.
10.若与互为共轭复数,则( )
A.0 B.3 C.-1 D.4
11.若数列为等差数列,且满足,为数列的前项和,则( )
A. B. C. D.
12.已知直线过圆的圆心,则的最小值为( )
A.1 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.设为等比数列的前项和,若,且,,成等差数列,则 .
14.已知单位向量的夹角为,则=_________.
15.在的展开式中,各项系数之和为,则展开式中的常数项为__________________.
16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.
(1)求数列与的通项公式;
(2)求数列的前项和;
(3)设为数列的前项和,若对于任意,有,求实数的值.
18.(12分)已知数列的前项和和通项满足.
(1)求数列的通项公式;
(2)已知数列中,,,求数列的前项和.
19.(12分)若,且
(1)求的最小值;
(2)是否存在,使得?并说明理由.
20.(12分)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
21.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.
(1)证明:轴;
(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.
22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)把的参数方程化为极坐标方程:
(2)求与交点的极坐标.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用等比数列的性质可得 ,即可得出.
【题目详解】
设与的等比中项是.
由等比数列的性质可得, .
∴与的等比中项
故选A.
【答案点睛】
本题考查了等比中项的求法,属于基础题.
2、C
【答案解析】
采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.
【题目详解】
A错误
由平面,//
而与平面相交,
故可知与平面相交,所以不存在EF//BC1
B错误,如图,作
由
又平面,所以平面
又平面,所以
由//,所以
,平面
所以平面,又平面
所以,所以存在
C正确
四面体EMAC的体积为
其中为点到平面的距离,
由//,平面,平面
所以//平面,
则点到平面的距离即点到平面的距离,
所以为定值,故四面体EMAC的体积为定值
错误
由//,平面,平面
所以//平面,
则点到平面的距离即为点到平面的距离,
所以为定值
所以四面体FA1C1B的体积为定值
故选:C
【答案点睛】
本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.
3、B
【答案解析】
试题分析:由程序框图可知:①,;②,;③,;④,;
⑤,. 第⑤步后输出,此时,则的最大值为15,故选B.
考点:程序框图.
4、D
【答案解析】
通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.
【题目详解】
解:,正确;
,为奇函数,周期函数,正确;
,正确;
D: ,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;
且,,,故D错误.
故选:.
【答案点睛】
本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.
5、A
【答案解析】
设,用表示出,求出的值即可得出答案.
【题目详解】
设
由
,
,
.
故选:A
【答案点睛】
本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.
6、B
【答案解析】
把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值.
【题目详解】
因为为实数,所以,解得.
【答案点睛】
本题考查复数的概念,考查运算求解能力.
7、D
【答案解析】
作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值
【题目详解】
解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,
设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,
所以x=2a,则EF2=2a,
由勾股定理可得(4a)2+(2a)2=(2c)2,
所以c2=7a2,
则e
故选:D.
【答案点睛】
本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.
8、B
【答案解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.
【题目详解】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:
则该四棱锥的体积为.
故选:B.
【答案点睛】
本题考查了利用三视图求几何体体积的问题,是基础题.
9、D
【答案解析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.
【题目详解】
类产品共两件,类产品共三件,
则第一次检测出类产品的概率为;
不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;
故第一次检测出类产品,第二次检测出类产品的概率为;
故选:D.
【答案点睛】
本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.
10、C
【答案解析】
计算,由共轭复数的概念解得即可.
【题目详解】
,又由共轭复数概念得:,
.
故选:C
【答案点睛】
本题主要考查了复数的运算,共轭复数的概念.
11、B
【答案解析】
利用等差数列性质,若,则 求出,再利用等差数列前项和公式得
【题目详解】
解:因为 ,由等差数列性质,若,则得,
.
为数列的前项和,则.
故选:.
【答案点睛】
本题考查等差数列性质与等差数列前项和.
(1)如果为等差数列,若,则 .
(2)要注意等差数列前项和公式的灵活应用,如.
12、D
【答案解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.
【题目详解】
圆的圆心为,
由题意可得,即,,,
则,当且仅当且即时取等号,
故选:.
【答案点睛】
本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、.
【答案解析】
试题分析:∵,,成等差数列,∴,
又∵等比数列,∴.
考点:等差数列与等比数列的性质.
【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列
基本量的方程即可求解,考查学生等价转化的思想与方程思想.
14、
【答案解析】
因为单位向量的夹角为,所以,所以==.
15、
【答案解析】
利用展开式各项系数之和求得的值,由此写出展开式的通项,令指数为零求得参数的值,代入通项计算即可得解.
【题目详解】
的展开式各项系数和为,得,
所以,的展开式通项为,
令,得,因此,展开式中的常数项为.
故答案为:.
【答案点睛】
本题考查二项展开式中常数项的计算,涉及二项展开式中各项系数和的计算,考查计算能力,属于基础题.
16、130. 15.
【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.
【题目详解】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
【答案点睛】
本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),(2)(3)
【答案解析】
(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.
(2)根据(1)的结