分享
2023学年湖南省怀化市第三中学高三第二次诊断性检测数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 湖南省 怀化市 第三中学 第二次 诊断 检测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数()的图象的大致形状是( ) A. B. C. D. 2.已知集合,集合,则(  ) A. B. C. D. 3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( ) A. B. C. D. 4.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( ) A. B. C. D. 5.复数满足,则复数等于() A. B. C.2 D.-2 6.设P={y |y=-x2+1,x∈R},Q={y |y=2x,x∈R},则 A.P Q B.Q P C.Q D.Q 7.函数在的图像大致为 A. B. C. D. 8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:) A.1624 B.1024 C.1198 D.1560 9.双曲线﹣y2=1的渐近线方程是( ) A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0 10.在的展开式中,的系数为( ) A.-120 B.120 C.-15 D.15 11.已知是虚数单位,若,则( ) A. B.2 C. D.10 12.已知,则不等式的解集是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设集合,,则____________. 14.三棱锥中,点是斜边上一点.给出下列四个命题: ①若平面,则三棱锥的四个面都是直角三角形; ②若,,,平面,则三棱锥的外接球体积为; ③若,,,在平面上的射影是内心,则三棱锥的体积为2; ④若,,,平面,则直线与平面所成的最大角为. 其中正确命题的序号是__________.(把你认为正确命题的序号都填上) 15.已知,若的展开式中的系数比x的系数大30,则______. 16.在中,内角所对的边分别是.若,,则__,面积的最大值为___. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设函数. (1)时,求的单调区间; (2)当时,设的最小值为,若恒成立,求实数t的取值范围. 18.(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图. (1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数; (2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系? (3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望. 附: 0.10 0.05 0.025 0.010 0.005 k 2.706 3.841 5.024 6.635 7.879 19.(12分)已知命题:,;命题:函数无零点. (1)若为假,求实数的取值范围; (2)若为假,为真,求实数的取值范围. 20.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点. (Ⅰ)证明:面; (Ⅱ)若,求二面角的余弦值. 21.(12分)如图,在三棱柱中,,,,为的中点,且. (1)求证:平面; (2)求锐二面角的余弦值. 22.(10分)已知x∈R,设,,记函数. (1)求函数取最小值时x的取值范围; (2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 对x分类讨论,去掉绝对值,即可作出图象. 【题目详解】 故选C. 【答案点睛】 识图常用的方法 (1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题; (2)定量计算法:通过定量的计算来分析解决问题; (3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 2、D 【答案解析】 可求出集合,,然后进行并集的运算即可. 【题目详解】 解:,; . 故选. 【答案点睛】 考查描述法、区间的定义,对数函数的单调性,以及并集的运算. 3、B 【答案解析】 根据题意表示出各位上的数字所对应的算筹即可得答案. 【题目详解】 解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示, 用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的. 故选:. 【答案点睛】 本题主要考查学生的合情推理与演绎推理,属于基础题. 4、B 【答案解析】 考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围. 【题目详解】 因为的图象上关于原点对称的点有2对, 所以时,有两个不同的实数解. 令,则在有两个不同的零点. 又, 当时,,故在上为增函数, 在上至多一个零点,舍. 当时, 若,则,在上为增函数; 若,则,在上为减函数; 故, 因为有两个不同的零点,所以,解得. 又当时,且,故在上存在一个零点. 又,其中. 令,则, 当时,,故为减函数, 所以即. 因为,所以在上也存在一个零点. 综上,当时,有两个不同的零点. 故选:B. 【答案点睛】 本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题. 5、B 【答案解析】 通过复数的模以及复数的代数形式混合运算,化简求解即可. 【题目详解】 复数满足, ∴, 故选B. 【答案点睛】 本题主要考查复数的基本运算,复数模长的概念,属于基础题. 6、C 【答案解析】 解:因为P ={y|y=-x2+1,x∈R}={y|y1},Q ={y| y=2x,x∈R }={y|y>0},因此选C 7、B 【答案解析】 由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果. 【题目详解】 设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B. 【答案点睛】 本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 8、B 【答案解析】 根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得. 【题目详解】 依题意 :1,4,8,14,23,36,54,…… 两两作差得 :3,4,6,9,13,18,…… 两两作差得 :1,2,3,4,5,…… 设该数列为,令,设的前项和为,又令,设的前项和为. 易,,进而得,所以,则,所以,所以. 故选:B 【答案点睛】 本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题. 9、A 【答案解析】 试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线. 解:双曲线 其渐近线方程是﹣y2=1 整理得x±2y=1. 故选A. 点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题. 10、C 【答案解析】 写出展开式的通项公式,令,即,则可求系数. 【题目详解】 的展开式的通项公式为,令,即时,系数为.故选C 【答案点睛】 本题考查二项式展开的通项公式,属基础题. 11、C 【答案解析】 根据复数模的性质计算即可. 【题目详解】 因为, 所以, , 故选:C 【答案点睛】 本题主要考查了复数模的定义及复数模的性质,属于容易题. 12、A 【答案解析】 构造函数,通过分析的单调性和对称性,求得不等式的解集. 【题目详解】 构造函数, 是单调递增函数,且向左移动一个单位得到, 的定义域为,且, 所以为奇函数,图像关于原点对称,所以图像关于对称. 不等式等价于, 等价于,注意到, 结合图像关于对称和单调递增可知. 所以不等式的解集是. 故选:A 【答案点睛】 本小题主要考查根据函数的单调性和对称性解不等式,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 先解不等式,再求交集的定义求解即可. 【题目详解】 由题,因为,解得,即, 则, 故答案为: 【答案点睛】 本题考查集合的交集运算,考查解一元二次不等式. 14、①②③ 【答案解析】 对①,由线面平行的性质可判断正确; 对②,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解; 对③,结合题意作出图形,由勾股定理和内接圆对应面积公式求出锥体的高,则可求解; 对④,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误; 【题目详解】 对于①,因为平面,所以,,,又, 所以平面,所以,故四个面都是直角三角形,∴①正确; 对于②,若,,,平面, ∴三棱锥的外接球可以看作棱长为4的正方体的外接球, ∴,,∴体积为,∴②正确; 对于③,设内心是,则平面,连接, 则有,又内切圆半径, 所以,,故, ∴三棱锥的体积为,∴③正确; 对于④,∵若,平面,则直线与平面所成的角最大时,点与点重合, 在中,,∴,即直线与平面所成的最大角为, ∴④不正确, 故答案为:①②③. 【答案点睛】 本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档题 15、2 【答案解析】 利用二项展开式的通项公式,二项式系数的性质,求得的值. 【题目详解】 展开式通项为: 且的展开式中的系数比的系数大 ,即: 解得:(舍去)或 本题正确结果: 【答案点睛】 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开