温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
孝感市
重点高中
教学
协作
体高三
第二次
诊断
检测
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
2.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )
A. B. C. D.
3.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )
A. B. C. D.
4.若P是的充分不必要条件,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5.已知的值域为,当正数a,b满足时,则的最小值为( )
A. B.5 C. D.9
6.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( )
A. B. C. D.
7.函数的值域为( )
A. B. C. D.
8.已知三棱柱( )
A. B. C. D.
9.某几何体的三视图如图所示,则该几何体中的最长棱长为( )
A. B. C. D.
10.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )
A. B. C. D.
11.的内角的对边分别为,若,则内角( )
A. B. C. D.
12.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:本题共4小题,每小题5分,共20分。
13.如图是一个算法的伪代码,运行后输出的值为___________.
14.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.
15.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.
16.已知复数(为虚数单位),则的共轭复数是_____,_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.
(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;
(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;
(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.
18.(12分)已知函数.
(1)求不等式的解集;
(2)若正数、满足,求证:.
19.(12分)已知直线是曲线的切线.
(1)求函数的解析式,
(2)若,证明:对于任意,有且仅有一个零点.
20.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.
(1)求的值;
(2)若的面积为求的值.
21.(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.
22.(10分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:
(1)估计该批次产品长度误差绝对值的数学期望;
(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.
【题目详解】
根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,
把该几何体补成如下图所示的圆柱,
其体积为,故原几何体的体积为.
故选:B.
【答案点睛】
本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.
2、D
【答案解析】
根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.
【题目详解】
如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,
该几何体的体积为,
故选:D.
【答案点睛】
本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.
3、A
【答案解析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.
【题目详解】
程序框图共运行3次,输出的的范围是,
所以输出的不小于103的概率为.
故选:A.
【答案点睛】
本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.
4、B
【答案解析】
试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.
由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.
考点:逻辑命题
5、A
【答案解析】
利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.
【题目详解】
解:∵的值域为,
∴,
∴,
∴
,
当且仅当时取等号,
∴的最小值为.
故选:A.
【答案点睛】
本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.
6、A
【答案解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.
【题目详解】
解:,
∴,
设,
∴,
当时,,函数单调递增,
当时,,函数单调递减,
∴,
当时,,当,,
函数恒过点,
分别画出与的图象,如图所示,
,
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,
∴且,即,且
∴,
故实数m的最大值为,
故选:A
【答案点睛】
本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.
7、A
【答案解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.
【题目详解】
,,,
因此,函数的值域为.
故选:A.
【答案点睛】
本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.
8、C
【答案解析】
因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=
9、C
【答案解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD ,,再求得其它的棱长比较下结论.
【题目详解】
如图所示:
由三视图得:该几何体是一个三棱锥,且平面SAC 平面ABC,,
过S作,连接BD,则 ,
所以 , ,,,
该几何体中的最长棱长为.
故选:C
【答案点睛】
本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.
10、B
【答案解析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.
【题目详解】
∵双曲线与的渐近线相同,且焦点在轴上,
∴可设双曲线的方程为,一个焦点为,
∴,∴,故的标准方程为.
故选:B
【答案点睛】
此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.
11、C
【答案解析】
由正弦定理化边为角,由三角函数恒等变换可得.
【题目详解】
∵,由正弦定理可得,
∴,
三角形中,∴,∴.
故选:C.
【答案点睛】
本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.
12、B
【答案解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.
【题目详解】
因为时,所以,,所以复数在复平面内对应的点位于第二象限.
故选:B.
【答案点睛】
本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、13
【答案解析】
根据题意得到:a=0,b=1,i=2
A=1,b=2,i=4,
A=3,b=5,i=6,
A=8,b=13,i=8
不满足条件,故得到此时输出的b值为13.
故答案为13.
14、①
【答案解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;
由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.
【题目详解】
解:①在中,,故①正确;
②函数在区间上存在零点,比如在存在零点,
但是,故②错误;
③对于函数,若,满足,
但可能为奇函数,故③错误;
④函数与的图象,可令,即,
即有和的图象关于直线对称,即对称,故④错误.
故答案为:①.
【答案点睛】
本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.
15、
【答案解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解
【题目详解】
设圆柱的轴截面的边长为x,
则由,得,
∴.
故答案为:
【答案点睛】
本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.
16、
【答案解析】
直接利用复数的乘法运算化简,从而得到复数的