·机械制造·杨涛,等·联合损失监督的高频工件深度学习识别算法基金项目:四川省重大科技专项(18ZDZX0140)第一作者简介:杨涛(1997—),男,四川雅安人,硕士研究生,研究方向为图像处理与识别模式。DOI:10.19344/j.cnki.issn1671-5276.2023.01.007联合损失监督的高频工件深度学习识别算法杨涛1,欧阳1,苏欣2,吴学杰1,李柏林1(1.西南交通大学机械工程学院,四川成都610031;2.中国电子科技集团公司第十研究所,四川成都610036)摘要:针对高频工件种类多、类间相似度较高造成的识别准确率低的问题,提出一种联合损失监督的深度学习识别算法。搭建基于卷积神经网络的图像特征向量编码模型,采用角度余量损失替换SoftMax损失,以减小工件类内特征之间的距离,完成同类工件的鲁棒性表示;引入隔离损失以增大异类工件特征之间的距离,实现异类工件的良好性区分。实验结果表明:该方法相较于传统的图像识别方法,识别准确率更高;相较于单一的角度余量和隔离损失,识别准确率分别提高了3.97%和13.88%。关键词:工件识别;联合损失;监督学习;卷积神经网络中图分类号:TP391.41文献标志码:A文章编号:1671-5276(2023)01-0030-04HighFrequencyWorkpieceDeepLearningRecognitionAlgorithmBasedonJointLossSupervisionYANGTao1,OUYang1,SUXin2,WUXuejie1,LIBailin1(1.SchoolofMechanicalEngineering,SouthwestJiaotongUniversity,Chengdu610031,China;2.The10thResearchInstituteofCETC,Chengdu610036,China)Abstract:Toimprovethelowrecognitionaccuracycausedbywidevarietiesofhighfrequencyartifactsandhighsimilaritybetweenclasses,adeeplearningalgorithmwithjointlosssupervisionisproposed.Animagefeaturevectorencodingmodelisbuiltbasedonconvolutionalneuralnetwork,andtheSoftMaxlossisreplacedbytheanglemarginlosstoreducethedistancebetweenthefeatureswithintheworkpiececlassandcompletetherobustrepresentationofsimilarworkpieces.Theisolationlossisintroducedtoincreasethedistancebetweenthefeaturesofheterogeneousworkpiecesandachievegooddiscriminationofheterogeneousworkpieces.Theexperimentalresultsshowthattherecognitionaccuracyoftheproposedmethodishigherthanthatofthetraditionalimagerecognitionmethod,withthesingleanglemarginincreasingby3.97%andisolationloss13.88%respectively.Keywo...