2023年2月第34卷第1期照明工程学报ZHAOMINGGONGCHENGXUEBAOFeb.2023Vol.34No.1结合日光的室内自适应照明方法渠吉庆1,孙科学2,3,许海兵1(1.江苏医药职业学院医学影像学院,江苏盐城224005;2.南京邮电大学电子与光学工程学院、微电子学院,江苏南京210023;3射频集成与微组装技术国家地方联合工程实验室,江苏南京210023)摘要:针对能源紧缺和高质量照明需求的问题,提出一种结合日光的室内自适应照明方法。首先建立以最小化能源消耗为目标,以平均照度和均匀度为约束条件的非线性约束数学模型。其次,使用粒子群优化算法(ParticleSwarmOptimization,PSO)求解各个灯具的亮度,该方法考虑了室内光源布局和光照传感器布局因素。最后,将该方法与人工神经网络(ArtificialNeuralNetworks,ANN)方法进行对比。结果显示,优化方法在能源消耗和照明质量上均胜于人工神经网络方法。关键词:智能照明;自适应调节;优化方法;粒子群优化算法中图分类号:TU113.66文献标识码:ADOI:10.3969/j.issn.1004-440X.2023.01.004DaylightAdaptiveSmartIndoorLightingMethodQUJiqing1,SUNKexue2,3,XUHaibing1(1.SchoolofMedicalImaging,JiangsuVocationalCollegeofMedicine,Yancheng224005,China;2.CollegeofElectronicandOpticalEngineering,NanjingUniversityofPostsandTelecommunications,Nanjing210023,China;3.Nation-LocalJointProjectEngineeringLabofRFIntegration&Micropackage,Nanjing210023,China)Abstract:Inodertoaddresstheproblemsofenergyscarcityandtheneedforhighqualitylighting,adaylightadaptivesmartindoorlightingmethodisproposed.Firstly,anon-linearconstrainedmathematicalmodelisdevelopedwiththeobjectiveofminimizingenergyconsumptionandwithaverageilluminanceanduniformityasconstraints.Then,thelightinglevelsofluminairesaresolvedusingParticleSwarmOptimization(PSO).Themethodtakesintoaccountthelayoutoftheindoorlightsourcesandthelayoutofthelightsensors.Finally,themethodiscomparedwiththeArtificialNeuralNetworks(ANN)method.TheresultsshowthattheoptimizationmethodoutperformstheANNmethodintermsofenergyconsumptionandlightingquality.Keywords:smartlighting;adaptiveadjustment;optimizationmethod;ParticleSwarmOptimization基金项目:江苏省大学生创新训练计划(SYB2021017);南京邮电大学国...