分享
2023学年河北省邢台三中高三下学期一模考试数学试题(含解析).doc
下载文档

ID:22765

大小:1.74MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 邢台 中高 下学 期一模 考试 数学试题 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围( ) A.[2,4] B.[4,6] C.[5,8] D.[6,7] 2.在中,角的对边分别为,若,则的形状为( ) A.直角三角形 B.等腰非等边三角形 C.等腰或直角三角形 D.钝角三角形 3.已知函数,若函数在上有3个零点,则实数的取值范围为( ) A. B. C. D. 4.下列不等式成立的是( ) A. B. C. D. 5.若等差数列的前项和为,且,,则的值为( ). A.21 B.63 C.13 D.84 6.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( ) A. B. C. D. 7.函数y=sin2x的图象可能是 A. B. C. D. 8.双曲线﹣y2=1的渐近线方程是( ) A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0 9.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( ) A. B. C. D. 10. “”是“直线与互相平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 11. “”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 12.若表示不超过的最大整数(如,,),已知,,,则( ) A.2 B.5 C.7 D.8 二、填空题:本题共4小题,每小题5分,共20分。 13.若,i为虚数单位,则正实数的值为______. 14.若函数,则的值为______. 15.函数过定点________. 16.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)求的普通方程和的直角坐标方程; (2)设曲线与曲线相交于,两点,求的值. 18.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:. (1)求曲线的普通方程以及曲线的平面直角坐标方程; (2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标. 19.(12分)选修4-5:不等式选讲 设函数. (1) 证明:; (2)若不等式的解集非空,求的取值范围. 20.(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为. (1)求的分布列及数学期望; (2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围. 21.(12分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2) (1)求证:平面; (2)在图2中,若,求直线与平面所成角的正弦值. 22.(10分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示: 试销价格(元) 产品销量 (件) 已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的. (1)试判断谁的计算结果正确? (2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解. 【题目详解】 画出不等式组所表示的可行域如图△AOB 当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意 t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16 由题意可得,20≤t+16≤22解可得4≤t≤6 故选:B. 【答案点睛】 此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法. 2、C 【答案解析】 利用正弦定理将边化角,再由,化简可得,最后分类讨论可得; 【题目详解】 解:因为 所以 所以 所以 所以 所以 当时,为直角三角形; 当时即,为等腰三角形; 的形状是等腰三角形或直角三角形 故选:. 【答案点睛】 本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题. 3、B 【答案解析】 根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究. 【题目详解】 当时,,令,在是增函数,时,有一个零点, 当时,,令 当时,,在上单调递增, 当时,,在上单调递减, 所以当时,取得最大值, 因为在上有3个零点, 所以当时,有2个零点, 如图所示: 所以实数的取值范围为 综上可得实数的取值范围为, 故选:B 【答案点睛】 本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题. 4、D 【答案解析】 根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误. 【题目详解】 对于,,,错误; 对于,在上单调递减,,错误; 对于,,,,错误; 对于,在上单调递增,,正确. 故选:. 【答案点睛】 本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性. 5、B 【答案解析】 由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解. 【题目详解】 解:因为,, 所以,解可得,,, 则. 故选:B. 【答案点睛】 本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题. 6、A 【答案解析】 设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解. 【题目详解】 设椭圆的长半轴长为,双曲线的长半轴长为 , 由椭圆和双曲线的定义得: , 解得,设, 在中,由余弦定理得: , 化简得, 即. 故选:A 【答案点睛】 本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题. 7、D 【答案解析】 分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择. 详解:令, 因为,所以为奇函数,排除选项A,B; 因为时,,所以排除选项C,选D. 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 8、A 【答案解析】 试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线. 解:双曲线 其渐近线方程是﹣y2=1 整理得x±2y=1. 故选A. 点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题. 9、C 【答案解析】 试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的. 考点:三视图 10、A 【答案解析】 利用两条直线互相平行的条件进行判定 【题目详解】 当时,直线方程为与,可得两直线平行; 若直线与互相平行,则,解得, ,则“”是“直线与互相平行”的充分不必要条件,故选 【答案点睛】 本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题. 11、A 【答案解析】 首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可; 【题目详解】 解:∵,∴可解得或, ∴“”是“”的充分不必要条件. 故选:A 【答案点睛】 本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题. 12、B 【答案解析】 求出,,,,,,判断出是一个以周期为6的周期数列,求出即可. 【题目详解】 解:., ∴,, , 同理可得:;;.;,,……. ∴. 故是一个以周期为6的周期数列, 则. 故选:B. 【答案点睛】 本题考查周期数列的判断和取整函数的应用. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 利用复数模的运算性质,即可得答案. 【题目详解】 由已知可得:,,解得. 故答案为:. 【答案点睛】 本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题. 14、 【答案解析】 根据题意,由函数的解析式求出的值,进而计算可得答案. 【题目详解】 根据题意,函数, 则, 则; 故答案为:. 【答案点睛】 本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力. 15、 【答案解析】 令,,与参数无关,即可得到定点. 【题目详解】 由指数函数的性质,可得,函数值与参数无关, 所有过定点. 故答案为: 【答案点睛】 此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间. 16、18 【答案解析】 根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号. 【题目详解】 解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列, 已知其中三个个体的编号为5,31,44, 故还有一个抽取的个体的编号为18, 故答案为:18 【答案点睛】 本题主要考查系统抽样的定义和方法,属于简单题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2) 【答案解析】 (1)消去参数方程中的参数,求得的普通方程,利用极坐标和直角坐标的转化公式,求得的直角坐标方程. (2)求得曲线的标准参数方程,代入的直角坐标方程,写出韦达定理,根据直线参数中参数的几何意义,求得的值. 【题目详解】 (1)由的参数方程(为参数),消去参数可得, 由曲线的极坐标方程为,得, 所以的直角坐方程为,即. (2)因为在曲线上, 故可设曲线的参数方程为(为参数), 代入化简可得.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开