温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
新余
中高
最后
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是( )
A. B. C. D.
2.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )
A.58厘米 B.63厘米 C.69厘米 D.76厘米
3.设函数恰有两个极值点,则实数的取值范围是( )
A. B.
C. D.
4.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为
A.1 B. C. D.
6.函数的图象大致为( )
A. B.
C. D.
7.已知函数,若,则下列不等关系正确的是( )
A. B.
C. D.
8.已知集合,集合,若,则( )
A. B. C. D.
9.设函数的导函数,且满足,若在中,,则( )
A. B. C. D.
10.记单调递增的等比数列的前项和为,若,,则( )
A. B. C. D.
11.若时,,则的取值范围为( )
A. B. C. D.
12.执行如图所示的程序框图,则输出的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.
14.已知函数,则的值为 ____
15.圆关于直线的对称圆的方程为_____.
16.若,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(1)解不等式;
(2)若均为正数,且,求的最小值.
18.(12分)已知在中,角,,的对边分别为,,,的面积为.
(1)求证:;
(2)若,求的值.
19.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组
频数(单位:名)
使用“余额宝”
使用“财富通”
使用“京东小金库”
30
使用其他理财产品
50
合计
1200
已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.
(1)求频数分布表中,的值;
(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
20.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
21.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.
(Ⅰ)若θ=,求的值;
(Ⅱ)若BC=4,AB=2,求边AC的长.
22.(10分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.
(1)求直方图中的值,并估计销量的中位数;
(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.
【题目详解】
如图所示:
设,,,则,
化简得,
当点到(轴)距离最大时,的面积最大,
∴面积的最大值是.
故选:A.
【答案点睛】
本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.
2、B
【答案解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.
【题目详解】
因为弧长比较短的情况下分成6等分,
所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,
故导线长度约为63(厘米).
故选:B.
【答案点睛】
本题主要考查了扇形弧长的计算,属于容易题.
3、C
【答案解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.
【题目详解】
由题意知函数的定义域为,
.
因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.
令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.
故选:C
【答案点睛】
本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.
4、D
【答案解析】
根据面面平行的判定及性质求解即可.
【题目详解】
解:a⊂α,b⊂β,a∥β,b∥α,
由a∥b,不一定有α∥β,α与β可能相交;
反之,由α∥β,可得a∥b或a与b异面,
∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,
则“a∥b“是“α∥β”的既不充分也不必要条件.
故选:D.
【答案点睛】
本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.
5、C
【答案解析】
根据抛物线定义,可得,,
又,所以,所以,
设,则,则,
所以,所以直线的斜率.故选C.
6、A
【答案解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.
【题目详解】
时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.
故选:A.
【答案点睛】
本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.
7、B
【答案解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.
【题目详解】
∵在R上单调递增,且,∴.
∵的符号无法判断,故与,与的大小不确定,
对A,当时,,故A错误;
对C,当时,,故C错误;
对D,当时,,故D错误;
对B,对,则,故B正确.
故选:B.
【答案点睛】
本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.
8、A
【答案解析】
根据或,验证交集后求得的值.
【题目详解】
因为,所以或.当时,,不符合题意,当时,.故选A.
【答案点睛】
本小题主要考查集合的交集概念及运算,属于基础题.
9、D
【答案解析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.
【题目详解】
设,
所以 ,
因为当时,,
即,
所以,在上是增函数,
在中,因为,所以,,
因为,且,
所以,
即,
所以,
即
故选:D
【答案点睛】
本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.
10、C
【答案解析】
先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.
【题目详解】
因为为等比数列,所以,故即,
由可得或,因为为递增数列,故符合.
此时,所以或(舍,因为为递增数列).
故,.
故选C.
【答案点睛】
一般地,如果为等比数列,为其前项和,则有性质:
(1)若,则;
(2)公比时,则有,其中为常数且;
(3) 为等比数列( )且公比为.
11、D
【答案解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.
【题目详解】
由题得对恒成立,
令,
在单调递减,且,
在上单调递增,在上单调递减,
,
又在单调递增,,
的取值范围为.
故选:D
【答案点睛】
本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.
12、B
【答案解析】
列出每一次循环,直到计数变量满足退出循环.
【题目详解】
第一次循环:;第二次循环:;
第三次循环:,退出循环,输出的为.
故选:B.
【答案点睛】
本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.
【题目详解】
的二项展开式的中,只有第5项的二项式系数最大,,
通项公式为,令,求得,
可得二项展开式常数项等于,
故答案为1.
【答案点睛】
本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
14、4
【答案解析】
根据的正负值,代入对应的函数解析式求解即可.
【题目详解】