分享
2023学年河北省邢台市高三下学期联考数学试题(含解析).doc
下载文档

ID:22686

大小:2.28MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 邢台市 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为 A. B. C. D. 2.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( ) A. B. C. D. 3.已知条件,条件直线与直线平行,则是的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 4.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( ) A. B. C. D. 5.已知各项都为正的等差数列中,,若,,成等比数列,则( ) A. B. C. D. 6.若,则下列不等式不能成立的是( ) A. B. C. D. 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A.408 B.120 C.156 D.240 8.若,则, , , 的大小关系为( ) A. B. C. D. 9.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是( ) A. B. C. D. 10.已知某几何体的三视图如图所示,则该几何体的体积是( ) A. B.64 C. D.32 11.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( ) A. B. C. D. 12.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________. 14.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______. 15.的展开式中,的系数为_______(用数字作答). 16.若,则____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)讨论的单调性; (2)若恒成立,求实数的取值范围. 18.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求曲线的普通方程和曲线的直角坐标方程; (2)若曲线、交于、两点,是曲线上的动点,求面积的最大值. 19.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表: 送餐单数 38 39 40 41 42 甲公司天数 10 10 15 10 5 乙公司天数 10 15 10 10 5 (1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率; (2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题: ①求乙公司送餐员日工资的分布列和数学期望; ②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由. 20.(12分)如图,正方体的棱长为2,为棱的中点. (1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由); (2)求与该平面所成角的正弦值. 21.(12分)已知数列的前项和为,且点在函数的图像上; (1)求数列的通项公式; (2)设数列满足:,,求的通项公式; (3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围; 22.(10分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥. (Ⅰ)求证:平面平面. (Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 如图所示,设依次构成等差数列,其公差为. 根据椭圆定义得,又,则,解得,.所以,,,. 在和中,由余弦定理得,整理解得.故选D. 2、C 【答案解析】 求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程 在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得. 【题目详解】 依题意,, 令,解得,,故当时,, 当,,且, 故方程在上有两个不同的实数根, 故, 解得. 故选:C. 【答案点睛】 本题考查确定函数零点或方程根个数.其方法: (1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解; (2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数. 3、C 【答案解析】 先根据直线与直线平行确定的值,进而即可确定结果. 【题目详解】 因为直线与直线平行, 所以,解得或;即或; 所以由能推出;不能推出; 即是的充分不必要条件. 故选C 【答案点睛】 本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型. 4、D 【答案解析】 由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积. 【题目详解】 如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得, ∴. 正三棱锥外接球球心必在上,设球半径为, 则由得,解得, ∴. 故选:D. 【答案点睛】 本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键. 5、A 【答案解析】 试题分析:设公差为 或(舍),故选A. 考点:等差数列及其性质. 6、B 【答案解析】 根据不等式的性质对选项逐一判断即可. 【题目详解】 选项A:由于,即,,所以,所以,所以成立; 选项B:由于,即,所以,所以,所以不成立; 选项C:由于,所以,所以,所以成立; 选项D:由于,所以,所以,所以,所以成立. 故选:B. 【答案点睛】 本题考查不等关系和不等式,属于基础题. 7、A 【答案解析】 利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况; 【题目详解】 解:根据题意,首先不做任何考虑直接全排列则有(种), 当“乐”排在第一节有(种), 当“射”和“御”两门课程相邻时有(种), 当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种), 则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种), 故选:. 【答案点睛】 本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题. 8、D 【答案解析】 因为,所以, 因为,,所以,. 综上;故选D. 9、D 【答案解析】 过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案. 【题目详解】 解:因为,,所以,即 过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系, 则,0,,,,,,0,,,1,, ,, ,,, 设平面的法向量, 则,取,得, 同理可求平面的法向量, 平面的法向量,平面的法向量. ,,. . 故选:D. 【答案点睛】 本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题. 10、A 【答案解析】 根据三视图,还原空间几何体,即可得该几何体的体积. 【题目详解】 由该几何体的三视图,还原空间几何体如下图所示: 可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4, 故. 故选:A 【答案点睛】 本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题. 11、C 【答案解析】 根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积. 【题目详解】 根据三视图还原几何体的直观图如下图所示: 由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体, 该几何体的体积为. 故选:C. 【答案点睛】 本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题. 12、A 【答案解析】 依题意有的周期为.而,故应左移. 二、填空题:本题共4小题,每小题5分,共20分。 13、4 【答案解析】 设,则,,, ,当且仅当,即时,等号成立. , 故答案为4 14、 【答案解析】 由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求. 【题目详解】 由已知得,又,,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,,所以点A坐标为,所以. 【答案点睛】 本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难. 15、60 【答案解析】 根据二项式定理展开式通项,即可求得的系数. 【题目详解】 因为, 所以, 则所求项的系数为. 故答案为:60 【答案点睛】 本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题. 16、 【答案解析】 由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果. 【题目详解】 因为, 所以, 所以. 故答案为:. 【答案点睛】 本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开