温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
赣县
第三中学
高三六校
第一次
联考
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正四面体的内切球体积为v,外接球的体积为V,则( )
A.4 B.8 C.9 D.27
2.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分不必要条件
3.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( )
A. B. C. D.
4.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )
A. B. C. D.8
5.下列函数中既关于直线对称,又在区间上为增函数的是( )
A.. B.
C. D.
6.下列四个图象可能是函数图象的是( )
A. B. C. D.
7.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )
A. B. C. D.
8.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为( ).
A. B. C. D.
9.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )
A. B. C. D.
10.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为( )
A. B. C. D.
11.在复平面内,复数对应的点的坐标为( )
A. B. C. D.
12.已知椭圆内有一条以点为中点的弦,则直线的方程为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知(为虚数单位),则复数________.
14.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.
若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.
15.函数的图象向右平移个单位后,与函数的图象重合,则_____.
16.已知,(,),则=_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
18.(12分)已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
19.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).
(1)求数列,的通项公式;
(2)求数列的前n项和.
20.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
21.(12分)如图,在三棱柱中,,,,为的中点,且.
(1)求证:平面;
(2)求锐二面角的余弦值.
22.(10分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.
【题目详解】
设正四面体的棱长为,取的中点为,连接,
作正四面体的高为,
则,
,
,
设内切球的半径为,内切球的球心为,
则,
解得:;
设外接球的半径为,外接球的球心为,
则或,,
在中,由勾股定理得:
,
,解得,
,
故选:D
【答案点睛】
本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.
2、A
【答案解析】
试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.
考点:充分条件、必要条件.
3、A
【答案解析】
利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.
【题目详解】
从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,
由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.
故选:A.
【答案点睛】
本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.
4、A
【答案解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.
【题目详解】
由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,
直观图如图所示,.
故选:A.
【答案点睛】
本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.
5、C
【答案解析】
根据函数的对称性和单调性的特点,利用排除法,即可得出答案.
【题目详解】
A中,当时,,所以不关于直线对称,则错误;
B中,,所以在区间上为减函数,则错误;
D中,,而,则,所以不关于直线对称,则错误;
故选:C.
【答案点睛】
本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.
6、C
【答案解析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.
【题目详解】
∵的定义域为,
其图象可由的图象沿轴向左平移1个单位而得到,
∵为奇函数,图象关于原点对称,
∴的图象关于点成中心对称.
可排除A、D项.
当时,,∴B项不正确.
故选:C
【答案点睛】
本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.
7、B
【答案解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.
【题目详解】
函数
则函数的最大值为2,
存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即
故答案为:B.
【答案点睛】
这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.
8、A
【答案解析】
直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.
【题目详解】
由题意可知直线的方程为,不妨设.
则,且
将代入双曲线方程中,得到
设
则
由,可得,故
则,解得
则
所以双曲线离心率
故选:A
【答案点睛】
此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.
9、A
【答案解析】
由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.
【题目详解】
水费开支占总开支的百分比为.
故选:A
【答案点睛】
本题考查折线图与柱形图,属于基础题.
10、A
【答案解析】
先通过降幂公式和辅助角法将函数转化为,再求最值.
【题目详解】
已知函数f(x)=sin2x+sin2(x),
=,
=,
因为,
所以f(x)的最小值为.
故选:A
【答案点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
11、C
【答案解析】
利用复数的运算法则、几何意义即可得出.
【题目详解】
解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),
故选:C
【答案点睛】
本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
12、C
【答案解析】
设,,则,,相减得到,解得答案.
【题目详解】
设,,设直线斜率为,则,,
相减得到:,的中点为,
即,故,直线的方程为:.
故选:.
【答案点睛】
本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
解:
故答案为:
【答案点睛】
本题考查复数代数形式的乘除运算,属于基础题.
14、B
【答案解析】
首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.
【题目详解】
若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;
若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;
若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;
若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;
综上所述,故B获得一等奖.
【答案点睛】
本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确.
15、
【答案解析】
根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.
【题目详解】
由函数图象的平移变换公式可得,
函数的图象向右平移个单位后,
得到的函数解析式为,
因为函数,
所以函数与函数的图象重合,
所以,即,
因为,所以.
故答案为:
【答案点睛】
本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题.
16、
【答案解析】
先利用倍角公式及差角公式把已知条件化简可得,平方可得.
【题目详解】
∵,∴,
则,平方可得.
故答案为:.
【答案点睛】
本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.