摘要:本文主要考虑加权Schrödinger-Hartree-Maxwell型方程组在次临界情况下非负解的刘维尔定理(即非负非平凡解的不存在性)。证明过程中主要运用反证法和放缩球体法,以及通过微分方程组与积分方程组之间的等价性,得到解的下界估计与积分方程组解的可积性相矛盾,随后证得加权Schrödinger-Hartree-Maxwell型方程组非平凡非负解的不存在性。关键词:加权Schrödinger-Hartree-Maxwell型方程组;次临界;非负解;放缩球体法中图分类号:O175.2文献标志码:A文章编号:2096-854X(2022)06-0095-07LiouvilleTheoremsforNonnegativeSolutionstoWeightedSchrödinger-Hartree-MaxwellTypeSystemLiYunting,LiuYaqiong,XiaoYingying*(SchoolofMathematicsandComputerScience,JiangxiScienceandTechnologyNormalUniversity,Nanchang330038,Jiangxi,P.R.China)Abstract:ThispapermainlyconcernedwiththeLiouvilletheorems(i.e.,non-existenceofnontrivialnonnegativesolutions)fornonnegativesolutionstoweightedSchrödinger-Hartree-Maxwelltypesysteminthesubcriticalcases.Intheprocessofproof,themethodofcontradictionandscalingspheresaremainlyused,andthroughtheequivalencebetweendifferentialsystemandintegralsystem,itisfoundthatthelowerboundestimationofsolutionsconflictswiththeintegrabilityofsolutionsofintegralequations,andthenthenon-existenceofnontrivialnonnegativesolutionsofweightedSchrödinger-Hartree-Maxwelltypesystemwasproved.Keywords:WeightedSchrödinger-Hartree-Maxwelltypesystem;subcritical;nonnegativesolution;scalingspheremethod加权Schrödinger-Hartree-Maxwell型方程组非负解的刘维尔定理李云亭,刘亚琼,肖迎迎*(江西科技师范大学数学与计算机科学学院,江西南昌330038)【数学计算】收稿日期:2022-04-16最终修回日期:2022-08-15接受日期:2022-08-16基金项目:江西省教育厅科学技术重点项目(GJJ211101)、江西科技师范大学研究生创新专项资金项目(YC2022-X09)作者简介:李云亭,女,在读硕士研究生,研究方向:偏微分方程;刘亚琼,女,在读硕士研究生,研究方向:偏微分方程;*肖迎迎(通讯作者),女,讲师,博士,研究方向:偏微分方程,E-mail:wittes163@163.com。江西科技师范大学学报JournalofJiangxiScience&TechnologyNormalUniversity第6期Issue62022年12月Dec.20...