第47卷第2期电网技术Vol.47No.22023年2月PowerSystemTechnologyFeb.2023文章编号:1000-3673(2023)02-0688-10中图分类号:TM721文献标志码:A学科代码:470·40基于时序残差概率的风电场超短期风速混合预测模型戴剑丰1,2,阎诚3,汤奕3(1.南京邮电大学自动化学院,江苏省南京市210023;2.南京邮电大学人工智能学院,江苏省南京市210023;3.东南大学电气工程学院,江苏省南京市210096)Ultra-short-termWindSpeedHybridForecastingModelforWindFarmsBasedonTimeSeriesResidualProbabilityModelingDAIJianfeng1,2,YANCheng3,TANGYi3(1.CollegeofAutomation,NanjingUniversityofPostsandTelecommunications,Nanjing210023,JiangsuProvince,China;2.CollegeofArtificialIntelligence,NanjingUniversityofPostsandTelecommunications,Nanjing210023,JiangsuProvince,China;3.SchoolofElectricalEngineering,SoutheastUniversity,Nanjing210096,JiangsuProvince,China)1ABSTRACT:Accuratepredictionofthewindspeedisofgreatsignificanceforimprovingtheaccuracyofwindpowerpredictionandthestableoperationofthepowergrid.Theprecisecharacterizationofthepredictionmodelresidualsisaprerequisitetoachieveaccuratepredictionofthewindspeedseriesinthewindfarm.Thispaperproposesanultra-short-termwindspeedhybridforecastingmodelbasedontheprobabilityoftimeseriesresiduals.First,thewindspeedisdecomposedintocomponentswithdifferentfrequencycharacteristicsbasedontheoptimizedvariationalmodaldecomposition.Then,adeterministicpredictionmodelisconstructedforthelinearcomponentswithregularchangesinthewindspeedcomponentsthroughthetimeseriesmodel.Forthefittingresidualcomponents,theconditionalkerneldensityestimationisusedtoestablishaprobabilityforecastingmodel.Thenbasedonthesuperpositionoftherecursiveresultsofthetwomodelsthewindspeedpredictionvalueisformed.Onthisbasis,inviewoftheproblemthattheresidualconditionalprobabilityofeachcomponentcannotdirectlyrepresenttheoriginalwindspeedprobabilityforecastingresult,thispaperproposesaprobabilitygenerationbasedonthesimulationtorealizethewindspeedprobabilityforecasting.Finally,takingtheoperatingdataofawindfarminNortheastChinaasanexample,i...