基于迁移学习的电气元件识别方法研究李殿明,于正林(长春理工大学机电工程学院,长春130022)摘要:电气元件识别是电控柜自动布线机的关键一步。由于采用普通深度学习训练小样本集可能出现过拟合,所以将VGG16、ResNet50模型迁移到电气元件识别领域,再利用网络手术技术分别将基于VGG16、ResNet50迁移模型的分类器替换成极限学习机。普通深度学习模型VGG16、ResNet50识别准确率分别为68.27%和72.94%;迁移学习模型识别准确率对比普通深度学习分别调高了18.89%、17.28%;使用迁移学习和ELM结合方法,准确率比对应迁移模型分别提高了5.56%、7.16%。结果表明,迁移学习更适合小样本电气元件的识别,并且迁移学习和ELM相结合的方法可进一步提高准确率。关键词:电气元件;识别;普通深度学习;迁移学习;极限学习机中图分类号:TP391.4文献标志码:A文章编号:1672-9870(2023)01-0073-08ResearchonElectricalComponentIdentificationMethodBasedonTransferLearningLIDianming,YUZhenglin(SchoolofMechatronicEngineering,ChangchunUniversityofScienceandTechnology,Changchun130022)Abstract:Identificationofelectricalcomponentsisthekeystepofautomaticwiringmachineforelectriccontrolcabinet.Sincethesmallsamplesettrainedbyordinarydeeplearningmayoverfit,theVGG16andResNet50modelsaretransferredtothefieldofelectricalcomponentidentification.Usingnetworksurgerytechnology,theclassifierbasedonVGG16andResNet50migrationmodelwasreplacedwithextremelearningmachine.TherecognitionaccuracyofcommondeeplearningmodelsVGG16andResNet50is68.27%and72.94%respectively.Comparedwithcommondeeplearning,therecognitionaccuracyoftransferlearningmodelwasincreasedby18.89%and17.28%respectively.Comparedwiththecorrespondingmigrationmodel,theaccuracyofthecombinedELMandtransferlearningmethodisimprovedby5.56%and7.16%respec-tively.Theresultsshowthattransferlearningismoresuitablefortheidentificationofsmallsampleelectricalcomponents,andthemethodcombinedwithtransferlearningandELMcanfurtherimprovetheaccuracy.Keywords:electricalcomponents;identification;generaldeeplearning;transferlearning;extremelearningmachine智能制造是“中国制造2025”的主攻方向,也是推动制造业向智能化、数字化...