《河南水利与南水北调》2022年第12期智慧水利基于经验模态分解和灰色模型的水工结构健康监测数据分析耿同举(河北省水资源研究与水利技术试验推广中心,河北石家庄050051)摘要:由于大坝结构的复杂性以及所处的环境,大坝坝体内部的情况往往难以探明,管理人员很难觉察到内部的细微变化。为了实现大坝结构安全运行,必须引入智能化的监测系统。基于此,文章对大坝的位移进行了监测,并基于经验模态分解法对位移数据进行处理,结合灰色线性回归组合模型对数据进行了拟合,发现该模型取得了较高的拟合效果,灰色线性回归组合模型由于不仅描述了原始序列的指数增长趋势,还有效描述了变量之间的线性关系,取得了较高的拟合效果,其平均相对误差最小,仅为1.610%,可以为大坝健康监测数据预测提供理论依据,确保大坝结构的安全运行。关键词:经验模态分解;灰色模型;水工结构;健康监测中图分类号:TV33文献标识码:B文章编号:1673-8853(2022)12-0091-03DataAnalysisonHealthMonitoringBasedonEmpiricalModeDecompositionandHydraulicStructuresofGreyModelGengTongju(HebeiWaterResourcesResearchandWaterConservancyTechnologyExperimentPromotionCenter,Shijiazhuang050051,China)Abstract:Duetothecomplexityofthedamstructureandtheenvironmentinwhichitislocated,theinternalconditionsofthedambodyareoftendifficulttodetect.Itisdifficultformanagerstodetectsubtlechangesinside.Inordertorealizethesafeoperationofdamstructure,intelligentmonitoringsystemmustbeintroduced.Basedonthis,thedisplacementofthedamismonitoredinthispaper.ThedisplacementdatawereprocessedbasedontheEmpiricalModeDecompositionMethod.ThedatawasalsofittedwiththeGreyLinearRegressionCombinationModel.Itisfoundthatthemodelhasachievedhighfittingeffect.TheGrayLinearRegressionCombinationModelnotonlydescribestheexponentialgrowthtrendoftheoriginalseries,butalsoeffectivelydescribesthelinearrelationshipbetweenvariables.Itachievedahighfittingeffect.Itsaveragerelativeerroristhesmallest,whichisonly1.610%.Themodelcanprovidetheoreticalbasisfordamhealthmonitoringdatapredictionandensurethesafeoperationofthedamstructure.Keywords:empiricalmodedecomposition;greymodel;hydraulicstructure;healthmonitoring1前言随着中国...