基金项目:国家自然科学基金(编号:61601076)作者简介:刘敬宇,女,大连大学在读硕士研究生.通信作者:裴悦琨(1985—),男,大连大学讲师,研究生导师,博士.EGmail:peiyuekun@126.com收稿日期:2022G05G07改回日期:2022G09G15DOI:10.13652/j.spjx.1003.5788.2022.80300[文章编号]1003G5788(2023)01G0139G07基于改进YOLOX模型的樱桃缺陷及分级检测CherrydefectandclassificationdetectionbasedonimprovedYOLOXmodel刘敬宇1,2LIUJingGyu1,2裴悦琨1,2PEIYueGkun1,2常志远1,2CHANGZhiGyuan1,2柴智1,2CHAIZhi1,2曹佩佩1,2CAOPeiGpei1,2(1.大连大学辽宁省北斗高精度位置服务技术工程实验室,辽宁大连116622;2.大连大学大连市环境感知与智能控制重点实验室,辽宁大连116622)(1.BeidouHighPrecisionPositioningServiceTechnologyEngineeringLaboratoryofLiaoningProvince,DalianUniversity,Dalian,Liaoning116622,China;2.EnvironmentSensingandIntelligentControlKeyLaboratoryofDalian,DalianUniversity,Dalian,Liaoning116622,China)摘要:目的:实现工业化条件下樱桃的快速分级.方法:采用YOLOX网络对缺陷果进行检测,通过为特征金字塔网络设置适当的融合因子来提高不明显缺陷的检测精度,并将FocalLoss集成到损失函数中;使用YOLOX网络对完好果进行分级,引入注意力机制CBAM来加强网络特征提取.结果:樱桃表面缺陷的平均检测精度为97.59%,大小和颜色分级的平均检测精度为95.92%.结论:改进后的YOLOX网络可明显提升樱桃缺陷及分级检测的精度.关键词:樱桃分级;YOLOX;FPN;FocalLoss;注意力机制Abstract:Objective:Inordertoexpandthescopeofcherrysalesandachieverapidgradingofcherriesunderindustrialconditions.Methods:Firstly,theYOLOXnetworkwasusedtodetectthedefectivefruit,inordertosolvesomeproblemswherethedefectwasnotobvious.Thedetectionaccuracyoftheinconspicuousdefectwasimprovedbysettingtheappropriatefusionfactorforthefeaturepyramidnetwork,andinordertosolvetheproblemofimbalancebetweenvarioustypesofrealsamples,FocalLosswasintegratedintothelossfunction.Then,theintactfruitwasgradedusingtheYOLOXnetwork,andtheattentionmechanismCBAMwasintroducedtoenhancethene...