2023年第1期专题:可见光通信基于随机森林算法的室内可见光指纹定位方法IndoorvisiblelightfingerprintpositioningmethodbasedonrandomforestalgorithmQUJia,WANGXudong*,WUNan,XUHao(InformationScienceTechnologyCollege,DalianMaritimeUniversity,DalianNiaoning116026,China)Abstract:Inordertofurtherimprovetheperformanceofdynamictargetindoorvisiblelightlocationandtrackingsystem,ain-doorvisiblelightfingerprintlocationmethodbasedonrandomforest(RF)algorithmwasproposed.Thelightintensitysignaloflight-emittingdiode(LED)wasusedasthefeaturetobuildafingerprintdatabase,andthedatainthefingerprintdatabasewasusedtotrainthedecisiontree.RFalgorithmwasintroducedforinitialpositioning,andthenKalmanfilterwasusedtooptimizetheinitialpositionestimation,soastoobtainamoreaccuratepositioningtrajectory.Thesimulationresultsshowthatintheindoorsceneof5m×5m×3m,theproposedpositioningmethodcanobtainthepositioningeffectthatmostsamplingpointserrordistri-butioniswithin4cm.Inaddition,thispaperverifiesthetechnicaladvantagesoftheproposedalgorithmbycomparingtheperfor-manceofdifferentindoorvisiblelightpositioningalgorithms.Keywords:indoorvisiblelightpositioning,randomforestalgorithm,fingerprintpositioning,Kalmanfilter,receivedsignalstrength曲佳,王旭东*,吴楠,许浩(大连海事大学信息科学技术学院,辽宁大连116026)摘要:为进一步提高动态目标室内可见光定位追踪系统性能,提出了一种基于随机森林(RF)算法的室内可见光指纹定位方法。利用发光二极管(LED)的光强信号作为特征构建指纹数据库,应用指纹库中的数据训练决策树,引入RF算法进行初始定位,再通过卡尔曼滤波对初始位置估计进行优化,从而获得更准确的定位轨迹。仿真结果表明:在5m×5m×3m的室内场景下,通过所提定位方法能获得大部分采样点误差分布在4cm之内的定位效果;此外,通过与不同室内可见光定位算法的性能进行对比,验证了所提算法的技术优势。关键词:室内可见光定位;随机森林算法;指纹定位;卡尔曼滤波;接收信号强度中图分类号:TN929.1文献标志码:A文章编号:1002-5561(2023)01-0001-07DOI:10.13921/j.cnki.issn1002-5561.2023.01.001开放科学(资源服务)标识码(OSID):引用本文:曲佳,王旭东,...