642023RadioEngineeringVol.53No.1doi:10.3969/j.issn.1003-3106.2023.01.009引用格式:陈娜.基于图神经网络的复杂网络关键节点检测算法[J].无线电工程,2023,53(1):64-72.[CHENNa.AlgorithmforDetectionofCrucialNodesinComplexNetworksBasedonGraphNeuralNetwork[J].RadioEngineering,2023,53(1):64-72.]基于图神经网络的复杂网络关键节点检测算法陈娜(山西工程科技职业大学计算机工程学院,山西晋中030619)摘要:针对复杂网络关键节点检测算法准确性低及可靠性不足的问题,结合图神经网络(GraphNeuralNetwork,GNN)模型提出了一种新的复杂网络关键节点检测算法。将复杂网络建模为图模型,通过注意力机制学习每个邻居节点的权重;利用GNN强大的图学习和推理能力,评估网络中节点与连接的关键性评分;采用强化学习(ReinforcementLearning,RL)搜索GNN的超参数,从而提高关键节点检测算法的可扩展性及可靠性。仿真实验结果表明,由该算法检测的关键节点具有较高的准确性,并且具有较快的运算速度。关键词:复杂网络;关键节点检测;网络关键节点;社区检测;深度学习;深度神经网络中图分类号:TP391文献标志码:A开放科学(资源服务)标识码(OSID):文章编号:1003-3106(2023)01-0064-09AlgorithmforDetectionofCrucialNodesinComplexNetworksBasedonGraphNeuralNetworkCHENNa(CollegeofComputerEngineering,ShanxiVocationalUniversityofEngineeringScienceandTechnology,Jinzhong030619,China)Abstract:Todealwiththeproblemsoflowaccuracyandreliabilityoftraditionalcrucialnodesdetectionalgorithmsforcomplexnetworks,anewcrucialnodesdetectionalgorithmforcomplexnetworksisproposedbasedongraphneuralnetworksmodel.Firstly,thecomplexnetworksaremodeledasgraphmodel,andtheattentionmechanismisutilizedtolearntheweightofeachneighbornode;then,thepowerfulgraphlearningandinferentialabilitiesofthegraphneuralnetworkareused,asaresult,thecrucialityscoresofnodesandlinksinthenetworksareevaluated;finally,thereinforcementlearningisadoptedtosearchthesuperparametersofthegraphneuralnetworksinordertoimprovethescalabilityandreliabilityofthecrucialnodesdetectionalgorithm.Simulationexperimentalresultsshowthatthecrucialnodesdetectedbytheproposedalgorithmaremoreaccurate,atthesamet...