基于多周期性MILP模型的新型配电系统拓扑辨识方法萧展辉,邹文景,唐良运(南方电网数字电网研究院有限公司,广州510000)摘要:在新兴低成本、非接触式的电流传感器的基础上,提出了基于多周期性混合整数线性优化的拓扑辨识方法。基于支路电流绝对值误差建立了拓扑辨识的混合整数非线性优化(MINLP)模型,采用线性化方法将MINLP模型转化为混合整数线性优化(MILP)模型,并通过多周期性测量数据建立多周期性优化模型,从而减小伪测量误差的影响。此外,证明了支路电流传感器优化配置条件,以确保拓扑辨识的准确性。在IEEE⁃33节点系统的仿真测试结果表明,所提出的拓扑辨识方法拓扑辨识精度高,随多周期性场景的增加,拓扑辨识精度逐渐增加,且受伪测量误差的影响比受支路电流测量误差更大。关键词:拓扑辨识;电流传感器;配电系统;混合整数线性规划;多周期性优化DOI:10.19753/j.issn1001⁃1390.2023.02.017中图分类号:TM711文献标识码:A文章编号:1001⁃1390(2023)02⁃0117⁃09Topologyidentificationmethodofnoveldistributionsystembasedonmulti⁃periodMILPmodelXiaoZhanhui,ZouWenjing,TangLiangyun(DigitalGridResearchInstitute,ChinaSouthernPowerGrid,Guangzhou510000,China)Abstract:Basedontheemerginglow⁃cost,non⁃contactcurrentsensors,atopologyidentificationmethodbasedonmulti⁃periodmixedintegerlinearoptimizationwasproposedinthispaper.Firstly,amixedintegernonlinearoptimization(MIN⁃LP)modelfortopologyidentificationwasestablishedbasedontheabsolutevalueerrorofbranchcurrent.Then,theMIN⁃LPmodelwastransformedintoamixedintegerlinearoptimizatio...