2023.1Vol.47No.1研究与设计收稿日期:2022-06-29基金项目:国家自然科学基金(61871410);珠海市产学研项目(ZH22017001200053PWC);佛山市深入推进创新驱动助力工程项目(2021003)作者简介:朱坤(1996—),男,四川省人,硕士,主要研究方向为太阳能光伏发电技术。通信作者:付青,E-mail:fuqing@mail.sysu.edu.cn基于EEMD-Kmeans-ALO-LSTM的短期光伏功率预测朱坤,付青(中山大学物理学院,广东广州510275)摘要:光伏功率预测对电网调度具有重要意义。针对光伏功率数据具有较强波动性和不稳定性的特点,提出了一种基于集成经验模态分解(ensembleempiricalmodedecomposition,EEMD)、K均值聚类算法(Kmeansclusteringalgorithm,Kmeans)和蚁狮优化(antlionoptimization,ALO)算法优化的长短期记忆神经网络(longshort-termmemorynetwork,LSTM)的光伏功率组合预测模型。对光伏功率数据进行EEMD分解,得到相应的本征模态分量(intrinsicmodefunction,IMF)和残差项;引入Kmeans聚类对分解后的序列重构,降低序列复杂度和分量数量;将重构后的子序列输入经ALO优化的LSTM模型进行预测,并将各序列预测结果简单加和作为最终预测值。与目前应用较广泛的EEMD-LSTM模型对比,表明EEMD-Kmeans-LSTM和EEMD-Kmeans-ALO-LSTM模型的预测精度均得到一定程度的提高。关键词:Kmeans聚类;集成经验模态分解;蚁狮优化算法;长短期记忆神经网络;光伏功率预测中图分类号:TM615文献标识码:A文章编号:1002-087X(2023)01-0103-05DOI:10.3969/j.issn.1002-087X.2023.01.023AphotovoltaicpowerforecastingmethodbasedonEEMD-Kmeans-ALO-LSTMZHUKun,FUQing(SchoolofPhysics,SunYat-senUniversity,GuangzhouGuangdong510275,China)Abstract:Photovoltaicpowerpredictionhassignificanceforpowergriddispatching.Thisarticlefocusesonthecharacteristicsofvolatilityandinstabilityinphotovoltaicpower,proposesacombinationforecastingmodelusingthelongshort-termMemory(LSTM)networkoptimizedbyantlionoptimization(ALO)algorithmbasedonensembleempiricalmodedecomposition(EEMD)andKmeansclusteringalgorithm(Kmeans).First,thephotovoltaicpowerdataisdecomposedbyEEMD.Thecorrespondingintrinsicmodefunctionsandresidualareobtained.Then,thedecomposedsequenceisreconstructedbyKmeansclusteringtoreducethesequencecomplexityandthenumberofdecomposedcomponents.Final...