温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
基于
E2F
基因
免疫
预后
风险
评分
模型
建立
版权归中国普通外科杂志所有http:/2023 年 1 月中国普通外科杂志Vol.32 No.1第 32 卷 第 1 期China Journal of General SurgeryJan.2023基于E2F靶点基因集和免疫亚型差异的肝细胞癌预后风险评分模型的建立何锶1,赵杨2,朱永乾2,吴卓翼3,吴英4,谢君蓉4,郑登烨4,简红梅4(中国人民解放军陆军军医大学基础医学院 1.学员三大队十一队 2.学员四大队十二队 3.学员三大队九队,重庆 400038;4.中国人民解放军陆军军医大学第一附属医院 肝胆外科,重庆 400038)摘 要 背景与目的:肝细胞癌(HCC)是肝癌中最常见的种类,HCC 患者的预后生存情况较差,其有效的预后预测也面临巨大挑战。许多研究已证实 E2F 基因家族和免疫微环境相关的基因标志物是癌症的重要预后因素,因此,本研究利用 TCGA 数据库筛选 E2F 基因家族和免疫微环境相关的 HCC 基因标志物,建立新的HCC风险评分模型,并预测HCC潜在治疗靶点。方法:TCGA 数据库中下载大型 HCC(LIHC)队列(424 例样本)。进行了基因集富集分析、基因集单样本富集分析和基因集单样本富集分析分数聚类后的基因表达差异分析,通过Lasso回归筛选标志基因并建模,根据模型计算患者得分并将患者分为高风险组和低风险组。使用受试者工作特征曲线(ROC)、Kaplan-Meier 生存曲线、Cox 回归分析等多种统计学方法以验证模型的可靠性。所有统计分析均使用 R 语言软件。最后在 Cbioportal 数据库查询风险模型的标志基因在 TCGA-HCC 样本中的基因变异情况,从String数据库中下载蛋白互作信息并用Cytoscape软件进行可视化分析。结果:确认了与 HCC 密切相关的 E2F 靶点基因组和免疫相关差异基因后,从中筛选到了与 HCC 患者总生存率明显相关的7个基因(CYR61,FBLN5,LPA,SAA1,SDC3,SERPINE1,SSRP1),建立7-mRNA预后模型:风险评分=-0.55CYR61 表达-0.18FBLN5 表达-0.17LPA 表达-0.06SAA1 表达+0.31SDC3表达+0.38SERPINE1表达+1.08SSRP1表达。该模型ROC的AUC值为0.846。Kaplan-Meier生存曲线显示,高风险评分患者预后不良(P0.001),高、低风险评分对预后的区分度与肿瘤大小和UICC分期相似,而比淋巴转移、远处转移和BMI值更好。多因素Cox回归分析显示,7-mRNA预后模型的预测能力独立于临床因素。此外,联合蛋白组学找到7个基因中的关键基因SERPINE1和LPA,预测抑制纤溶酶原激活可能是治疗HCC的新的靶途径。结论:本研究揭示了 7 个基因与 E2F 靶点和免疫的相关关系,为 HCC 患者的不良预后提供了新的生物标志物,并建立了有较高预测准确性预后风险评分模型。然而,多基因预后模型的预测能力仍需大量多中心的循证医学证据证实,被纳入的多基因模型的基因功能和参与的机制仍尚需进行更深入的研究。关键词 癌,肝细胞;E2F转录因子类;免疫;预后;危险因素中图分类号:R735.7 专题研究 doi:10.7659/j.issn.1005-6947.2023.01.005China Journal of General Surgery,2023,32(1):64-73.http:/dx.doi.org/10.7659/j.issn.1005-6947.2023.01.005基金项目:重庆市科技局技术创新与应用发展专项基金资助项目(CSTC2021jscx-gksb-N0009)。收稿日期:2022-04-06;修订日期:2022-06-17。作者简介:何锶,中国人民解放军陆军军医大学基础医学院本科生,主要从事生物信息学分析方面的研究。通信作者:简红梅,Email:64第 1 期何锶,等:基于E2F靶点基因集和免疫亚型差异的肝细胞癌预后风险评分模型的建立 版权归中国普通外科杂志所有http:/Construction of prognostic assessment model for hepatocellular carcinoma based on E2F targets and immune subtype differencesHE Si1,ZHAO Yang2,ZHU Yongqian2,WU Zhuoyi3,WU Ying4,XIE Junrong4,ZHENG Dengye4,JIAN Hongmei4(1.The Eleventh Squadron of the Third Student Brigade 2.the Twelfth Squadron of the Fourth Student Brigade 3.the Ninth Squadron of the Third Student Brigade,Basic Medicine College of Army Medical University,Chongqing 400038,China;4.Department of Hepatobiliary Surgery,the First Affiliated Hospital of Army Medical University,Chongqing 400038,China)Abstract Background and Aims:Hepatocellular carcinoma(HCC)is the most common type of liver cancer.The prognosis of HCC patients is poor,and its effective prognosis prediction is also facing significant challenges.Several studies have shown that the genetic markers associated with the E2F gene family and immune microenvironment are important prognostic factors for cancers.Therefore,this study was conducted to screen the HCC gene signatures related to the E2F gene family and immune microenvironment using the TCGA database,establish a new risk assessment model for HCC and predict the potential therapeutic targets for HCC.Methods:A large HCC(LIHC)dataset(n=424)from the TCGA database was downloaded.Gene set enrichment analysis,single sample gene set enrichment analysis,and differential gene expression analysis was performed,marker genes were screened and modeled by Lasso regression,patient scores were calculated according to the model,and patients were divided into high-risk and low-risk groups.Multiple statistical methods,such as the receiver operating characteristic(ROC)curve,Kaplan-Meier survival curve,and Cox regression analysis,were used to verify the models reliability.R language software was used for all statistical analyses.Finally,genetic alterations of the marker genes from the risk model were queried in the TCGA-HCC samples in the Cbioportal database.The protein interaction information was downloaded from the String database and visualized in Cytoscape software.Results:After identification of the E2F target genome and immune-related differential genes which were closely related to HCC,seven genes(CYR61,fbln5,LPA,SAA1,SDC3,serpine1,ssrp1)significantly associated with the overall survival rate of HCC patients were screened,and a prognostic 7-mRNA signature model was established:risk score=-0.55CYR61 expression-0.18FBLN5 expression-0.17LPA expression-0.06SAA1 expression+0.31SDC3 expression+0.38 SERPINE1 expression+1.08SSRP1 expression The ROC AUC value of the model was 0.846.Kaplan-Meier survival curve showed that patients with high-risk scores had a poor prognosis(P0.001).The degree of discrimination for prognosis of high and low-risk scores was similar to those of tumor size and UICC stage and higher than those of lymph node metastasis,distant metastasis,and BMI.Multivariate Cox regression analysis showed that the predictive ability of the 7-mRNA signature model was independent of clinical factors.In addition,the key genes SERPINE1 and LPA in the 7 genes were found by combining proteomics,which predicted that inhibiting plasminogen activation was probably a new target approach for treating HCC.Conclusion:This study reveals the correlation between seven genes and E2F targets and