温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2000
2020
年中
国典
及其
植被
景观
格局
关系
徐勇
Eco-EnvironmentalKnowledge Web环 境 科 学Environmental Science第44卷第4期 2023年4月Vol44,No4 Apr,20232000 2020 年中国典型经济区 PM2 5时空变化及其与植被景观格局的关系徐勇,李欣怡,黄雯婷,郭振东,盘钰春,郑志威,戴强玉(桂林理工大学测绘地理信息学院,桂林541006)摘要:探究典型经济区 PM2.5时空变化特征及其与植被景观格局的关系,对区域 PM2.5污染治理和大气环境保护具有重要意义 基于 PM2.5数据和 MODIS NDVI 数据集,采用像元二分模型、Getis-Ord G*i分析、Theil-Sen Median 趋势分析、Mann-Kendall检验、皮尔逊相关分析和复相关分析等方法,探究中国三大经济区 PM2.5空间聚集性、时空变化特征及其与植被景观格局指数的相关性 结果表明,2000 2020 年环渤海地区 PM2.5主要表现为热点区扩张,冷点区缩减;长江三角洲地区冷点区和热点区面积占比无显著变化;珠江三角洲地区冷点区和热点区均发生扩张 2000 2020 年三大经济区 PM2.5整体表现为下降趋势,改善程度由高到低依次是:珠江三角洲地区、长江三角洲地区和环渤海地区 2000 2020 年三大经济区不同植被覆盖度等级下 PM2.5均表现为下降趋势,三大经济区 PM2.5均在极低植被覆盖度区域改善最为显著 在景观尺度下,与环渤海地区、长江三角洲地区和珠江三角洲地区 PM2.5相关性最强的植被景观格局指数分别是聚集度指数(AI)、最大斑块指数(LPI)和香农多样性指数(SHDI)在类型尺度下,与环渤海地区、长江三角洲地区和珠江三角洲地区 PM2.5相关性最强的景观格局指数分别是聚集度指数(AI)、斑块形状指数(LSI)和类型斑块面积比(PLAND)植被景观格局指数对 PM2.5的综合影响强于单个植被景观格局指数的影响 综上所述,2000 2020 年三大经济区 PM2.5空间聚集性均发生了改变 在研究时段内,三大经济区 PM2.5整体表现为下降趋势 在景观尺度和类型尺度下,三大经济区 PM2.5与植被景观格局指数的关系均表现出明显差异关键词:典型经济区;PM2.5;植被景观格局;时空变化;Getis-Ord G*i分析法中图分类号:X513文献标识码:A文章编号:0250-3301(2023)04-1852-13DOI:1013227/j hjkx202205283收稿日期:2022-05-25;修订日期:2022-07-06基金项目:广西自然科学基金项目(2020GXNSFBA297160);广西科技基地和人才专项(桂科 AD21220133);国家自然科学基金项目(42061059,42161028);广西空间信息与测绘重点实验室项目(191851016);大学生创新创业训练计划项目(202210596388)作者简介:徐勇(1988 ),男,博士,副教授,主要研究方向为环境遥感、气候变化和植被覆盖反演,E-mail:yongxu glut edu cnSpatio-temporal Variation in PM2.5Concentration and Its elationship with VegetationLandscape Patterns in Typical Economic Zones in China from 2000 to 2020XU Yong,LI Xin-yi,HUANG Wen-ting,GUO Zhen-dong,PAN Yu-chun,ZHENG Zhi-wei,DAI Qiang-yu(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China)Abstract:This study explored the temporal and spatial variation in PM2.5concentration and its relationship with the vegetation landscape pattern in three typical economiczones in China,which is of great significance for regional PM2.5pollution control and atmospheric environmental protection In this study,the pixel binary model,Getis-OrdG*ianalysis,Theil-Sen Median analysis,Mann-Kendall significance test,Pearson correlation analysis,and multiple correlation analysis were used to explore the spatial clusterand spatio-temporal variation in PM2.5and its correlation with the vegetation landscape index in the three economic zones of China on the basis of PM2.5concentration data andMODIS NDVI data set The results showed that PM2.5in the Bohai Economic im was mainly dominated by the expansion of hot spots and the reduction in cold spots from2000 to 2020 The proportion of cold spots and hot spots in the Yangtze iver Delta showed insignificant changes Both cold and hot spots in the Pearl iver Delta hadexpanded PM2.5showed a downward trend in the three major economic zones from 2000 to 2020,and the magnitudes of increasing rates were higher in the Pearl iver Delta,followed by those in the Yangtze iver Delta and Bohai Economic im From 2000 to 2020,PM2.5exhibited a downward trend in the context of all vegetation coverage grades,and PM2.5had most significantly improved within extremely low vegetation coverage in the three economic zones On the landscape scale,PM2.5values were mostly correlatedwith aggregation index in the Bohai Economic im,with the largest patch index in the Yangtze iver Delta and Shannons diversity in the Pearl iver Delta,respectivelyUnder the context of different vegetation coverage levels,PM2.5showed the highest correlation with aggregation index in the Bohai Economic im,landscape shape index in theYangtze iver Delta,and percent of landscape in the Pearl iver Delta,respectively PM2.5showed significant differences with vegetation landscape indices in the threeeconomic zones The combined effect of multiple vegetation landscape pattern indices on PM2.5was stronger than that of the single vegetation landscape pattern index Theabove results indicated that the spatial cluster of PM2.5in the three major economic zones had changed,and PM2.5showed a decreasing trend in the three economic zonesduring the study period The relationship between PM2.5and vegetation landscape indices exhibited obvious spatial heterogeneity in the three economic zonesKey words:typical economic zone;PM2.5;vegetation landscape pattern;spatio-temporal variation;Getis-Ord G*ianalysisPM2.5是指大气环境空气中动力学当量直径2.5 g 的颗粒物,具有直径小,污染范围广,滞留时间长,易吸附有害物质等特点1 3 有研究表明,大气环境中 PM2.5浓度超标,不仅会引起雾-霾恶劣天气,还会威胁人类的免疫系统,诱发呼吸道 疾病4 6 近年来,PM2.5时空分布特征及其影响因素已成为学术界的研究热点 Lim 等7 研究表明在全球范围内中国和印度属于 PM2.5高风险区,欧洲、澳4 期徐勇等:2000 2020 年中国典型经济区 PM2 5时空变化及其与植被景观格局的关系大利亚和北美属于 PM2.5减少区 发达国家在保持绿度的情况下进行了城市扩张,但仍然减少了 PM2.5排放,而发展中国家随着 PM2.5浓度的上升,绿度呈下降趋势 慕航等8 研究了 1999 2016 年“一带一路”沿线 65 个城市 PM2.5时空变化趋势,结果表明PM2.5浓度空间分布存在明显的区域差异,且在研究时段内 65 个城市的年均 PM2.5浓度从 12.0 g m3增加到了 14.1 g m3 周亮等9 研究表明 2001 2011 年中国 PM2.5污染呈现先快速上升后趋于稳定的变化趋势,地理条件、人口密度、交通运输、工业烟尘和秸秆燃烧是影响中国 PM2.5变化的主要因素Zhang 等10 研究发现节能减排等 PM2.5污染治理措施的顺利实施,是 2013 2017 年中国 PM2.5污染改善的最主要原因图 1研究区示意Fig 1Location of the study area随着研究的不断深入,植被对 PM2.5污染的净化作用逐渐引起了国内外学者的重视 Zhang 等11 研究发现在植被茂密的中国南方地区,植被季节周期对 PM2.5削减更加显著 与非城市地区相比,城市地区的植被季节周期的削弱效应较弱 Le