温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
最新
演讲
技术
驱动
创新
无尽
前沿
把握
机会
陆奇最新演讲:在技术驱动创新的无尽前沿把握好机会
陆奇最新演讲:在技术驱动创新的无尽前沿把握好机会
大家好,我今天分享的主题是《在技术驱动创新的无尽前沿把握好机会》。
一、数字化发展的无尽前沿:
结构与趋势
在奇绩创坛,我们主要会研究结构和判断趋势。
技术如何驱动创新和经济发展,它的核心和结构是怎样的呢?我们可以从下面这张PPT开始:
技术驱动社会经济发展,它的结构是能源和信息的组合,它是核心生产力。任何一个经济时代最关键的是核心生产力。
人类发展经济大概有三个大的体系:农业体系、工业体系和数字化体系(图中的蓝色曲线)。
在农业体系,能源主要来自太阳能,生产主要依赖光合作用(对应图中橙色曲线,这条曲线比较简单,它一直在往前延伸)。
工业时代的能源是化石能源,人类使用机械设备、电气设备、电子设备来转化能源(对应图中绿色曲线)。
数字化时代是图中的蓝色曲线,这条蓝色的“数字化”曲线大概有50年的历史,主要因为我们开始有通用算力。
这条蓝色曲线为什么增长那么快?为什么会驱动经济发展的加速?原因是技术,技术一直就是人类最大的核心产能,它驱动了创新。
在过去,技术是间接的产能,而今天,数字化把技术变成越来越直接的核心产能。(大家可以去观察,这条蓝色曲线上的公司,他们公司的财务资源有多少比例是投入做研发的,多少是投入做生产的)
过去40多年,中国基本上把工业发展阶段的大量基础课都补齐了,可以参与这一波新时代的主流创新,让技术成为直接的产能。
为什么技术可以成为直接产能,加速驱动创新和经济发展呢?这本身跟技术的本质和结构分不开。
技术的本质是用信息去转化能源,改变自然现象,满足人的需求。技术的结构有两个组成部分:可编程,任何技术都有信息部分;可执行,有能源转化部分。
技术的发展本身和达尔文进化很类似,它选择的永远是人类需求更多的方向。
同时,技术的发展基于科学之上,科学是一个知识探索体系。由于技术和数字化的进展,科学发展的范式也在不断地演进。
如今,数字化让科学进入了第四范式,另外微软的ChrisBishop提出了第五范式(编者注:ChrisBishop是微软技术院士、微软研究院科学智能中心负责人),它是数据驱动和计算驱动的。科学的进步跟商业社会的经济发展越来越分不开。我们处在这个时代的核心结构,使得这个产能会不断地、加速地产生。
分析完技术的本质和结构以后,我们来梳理“技术驱动创新”的宏观结构,这是一个更大的框架性结构,如下图:
这张图的核心是数字化,正是数字化的进展,把技术变成了核心的直接产能。
数字化的平台包括移动互联网/云、人工智能等,它们帮助人类更好地获取信息(知识)。这些平台不断地用信息和能源转化去改变物理世界。能源转化必须要有能源,数字化推动了新一代能源的应用发展,尤其是可持续的能源。
在物理世界里转换这些能源只有两种方法:一种是用生命的过程(biologicalpathway)来转化能源,对应是新生命科学;另一种是用物理的方法来转换能源,对应图中的新材料科技。
转化能源必须要有物理空间,所以有新的空间技术。这些整个组合在一起,形成了一个宏观的结构,让我们可以不断地拆解梳理每个关键节点的结构和趋势。
通过这样的框架,我们接下来继续拆解,仔细地看每个领域的创新机会。
1.数字化发展的趋势和核心结构
首先我们来分析数字化:
数字化的发展趋势是平台驱动的,随着数字化进展,平台的规模、能力都在成长。新的平台诞生的速度也越来越快,也越来越多(下面这张图展示的是过去50多年成长起来的数字化平台)。
此外,数字化的平台,结构非常稳定。拆解数字化的平台结构,可以帮助我们更好地分析和判断未来数字化的趋势和机会。
数字化平台的结构分为前端和后端两大部分,前端是跟人交互的,后端是通用的能力。
数字化前端分成三个层次:
(1)底层是体验设备,设备当中有高度集成的芯片模组和操作系统。今天我们的设备有手机、电脑、眼镜、头显、手表、汽车、可穿戴、可植入等等一系列的设备。
(2)第二层我们称为体验容器。如果你做操作系统,可能都知道“容器”是什么。我们在数字化的过程当中到目前为止有三大类容器(Container)。
第一类容器是二维的,可能是一页,可能是一帧,它是文字符号和图像的载体,间接地用信息跟人交互,人可以去看、可以去听。
第二类容器是新一代的三维容器,人们称为元宇宙,让人可以在其内部具象地存在,本质上是让人们“在一起、在那里”,元宇宙会带来大量的创新和商业化发展的机会。
第三类容器是脑机接口,现在还很早期,但长期来看会非常重要,它可以是穿戴设备,也可以是植入式设备,通过数字化的容器来获得我们人内在的感受,可以跟人做交互。
(3)第三层是画布。在容器之上,从开发的角度来讲,我们有画布(Canvas),写代码、做产品的同学应该知道这个概念。今天二维的画布有文档、图像和视频。在元宇宙里,新产生的画布是空间,是世界,是人。容器和画布都是数字化前端的核心的组成部分。
数字化后端是提供能力给数字化应用的场景,也分为三层:
(1)底层是后端设备,设备里可以是服务器、交换机、数据中心、卫星载荷等等,有高度集成的芯片、模组、操作系统等。
(2)往上一层是基础设施,大规模的通信网络、数据堆栈、分布式系统等等。
(3)最上一层是能力的供给层,让数字化的能力像电一样可以无处不在。后端主流的能力供给是云、边缘和区块链,Web3是新一代的数字化的能力供给,有机地融入了信任和激励机制。
前端和后端建设在通用的基础设施之上:
(1)底层叫做数字化的公共基础,基本上是基于物理和数学。
这里先简单提一下,人工智能本质上是一个新的计算体系,基于重叠向量的计算体系,可以在硅基或生物基上做。
某种意义上讲,今天的主流算法一开始都是在生物基上做的,也就是人的大脑,只不过大脑的功耗只有25瓦,算力很有限,今天人工智能的核心创新是在重叠向量这一层,可以应用到所有前端和后端。
(2)在这之上是数字化的开发基础,包括一系列的开源软件,让我们能系统性地、有效地去开发前端、后端。这是数字化的平台的结构和发展趋势。
有了这个作为基础之后,我们可以进一步地拆解更具体的机会。
2.数字化的能力和需求结构
数字化的进展是技术推动、需求拉动的组合。
首先我们讲需求。C端需求包括人群、时长、频次等层次,也可以把它分成这几个大类,通讯、社交、内容、消费等等。
这里我们把一类特殊人群分了出来——P端(Producer),即创作者,这类人可以开发、设计、创作。创作可以是广义的,他们也可以是艺术家或者科学家。
此外是B端(企业端),需求也相当结构化和稳定。
数字化满足需求的能力,也相当结构化。截至目前,我们有6种不同的数字化的能力,可以系统性地满足长期越来越丰富的C端、P端和B端的需求(见下图)。
第一层是二维信息,二维容器是让人类间接地听和写。
第二层元宇宙,它是三维的、具象的、可以体验的。
第三层是Web3,是一种数字化的信任和激励关系。
第四层是通过数字化能力在物理空间里原位直接地满足人的需求,比如由自动驾驶来完成将人直接送到目的地的任务。
第五种是通过脑机接口这样的技术内在地去理解和满足人的需求。
第六种是智能模型。某种意义上,智能模型可以说是一个可以思考和做规划的大脑。它可以嵌入到任何一个场景去满足人的需求。
在上面的图中,我们用蓝色标注了技术满足需求的进展,比如二维信息,通过电脑和手机,基本上所有的C端和大部分的B端都局部地满足了人的需求,元宇宙和Web3才刚刚开始。
有了需求的结构和满足需求的数字化能力之后,接下来我们怎么来判断有哪些创新机会?
建议大家看技术和需求的组合,技术发展开始商业化应用往往是这样几种情况:
第一是单点突破。人工智能某种意义上是个单点突破,突然非线性地出现了一种新的能力,可以撬动一类需求。
第二是多点聚合,比如说,这一次的元宇宙技术在某种意义上就是多点聚合,水到渠成,好多技术一直在发展。
第三是纵深开拓,当这些技术聚合在一起之后,往往还会进一步地往纵深方向更深入地发展,撬动更多的需求。
所以大家要判断在技术上是不是有可能单点突破或者是不是多点聚合,还有技术的深度是否可以满足更深层的需求。
新技术一般都是先单点切入需求。举个例子,元宇宙就在找一个方向突破,接着会往横向的应用场景拓宽,满足更多的需求,拓展到了一定的宽度之后,才能纵向渗透更深的需求。新技术都是按照这样的常规满足需求的。
3.数字化的本质与价值飞轮
上面这张图右上部分描述了数字化驱动商业化的特性,为什么数字化会产生极高的商业价值和高速增长?
它跟数字化产业生态的结构是分不开的。假如我们用数字化的能力去满足一类需求,一般都是这样三位一体的生态结构(如图右上部分所示)。
如果我们没有数字化的能力去满足这类需求,那么人类会通过三种活动去满足这类需求。
首先,人要去观察这类需求,要收集信息,有了信息之后,人会做一系列模型去指导决策,然后通过人和人之间的协作,用工具与流程去满足这些需求,这涉及到观察系统、决策系统和执行系统。
有了数字化之后,上述人的行为变成数字化的行为,观察系统转变成软件定义,决策系统从软件定义开始变成数据驱动,执行系统也从人的行动变成软件驱动。
软件定义和数字数据驱动之间的关系是什么?软件定义本质上是把人的知识用代码表达出来,让效率更高。但是数据驱动的效能远超软件驱动。一旦软件定义开始之后,就可以收集大量数据,这些数据可以沉淀大量的知识,比起人自身的知识可以更好地满足这人的需求。
举一个例子,我个人比较熟悉的是搜索引擎,我做了很长时间。一开始我们用人的知识来写算法,通过搜索引擎去找文档,所以搜索引擎其实非常不好用,经常找不到。
但是今天的搜索引擎,比如谷歌和百度,都非常神奇,不管你输入什么关键词,有几乎很高的概率它们知道你在找什么,为什么找,知道你真正的意图,所有输入的关键词,点击了什么,如何修改你的关键词。
因为这些搜索引擎是数据驱动的,它们可以通过积累的数据学习。今天搜索引擎所掌握的知识是远远超过我们人类加在一起的知识。除了搜索之外,内容推荐、电商供需的匹配、物流等等,一个个行业都将被数据驱动。
有了数据驱动,产业的增长速度会非常不一样,因为数字化产业具备这样四个特征:
(1)数字化的产业是高度集成的。芯片的集成度越来越高,摩尔定律决定了,同样性能的硬件,成本会越来越低。
(2)软件驱动的产业,迭代率会加快,每几周就可以更新一次。
(3)数据驱动,