温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
中考
数学
考点
24
直角三角形
解析
考点24 解直角三角形
一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,
正弦:sinA=;余弦:cosA=;正切:tanA=.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
二、特殊角的三角函数值
α
sinα
cosα
tanα
30°
45°
1
60°
三、解直角三角形
1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2.解直角三角形的常用关系:
在Rt△ABC中,∠C=90°,则:
(1)三边关系:a2+b2=c2;
(2)两锐角关系:∠A+∠B=90°;
(3)边与角关系:sinA=cosB=,cosA=sinB=,tanA=;
(4)sin2A+cos2A=1.
3.科学选择解直角三角形的方法口诀:
已知斜边求直边,正弦、余弦很方便;
已知直边求直边,理所当然用正切;
已知两边求一边,勾股定理最方便;
已知两边求一角,函数关系要记牢;
已知锐角求锐角,互余关系不能少;
已知直边求斜边,用除还需正余弦.
四、解直角三角形的应用
1.仰角和俯角
仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.
俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.
2.坡度和坡角
坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=.
坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.
坡度越大,α角越大,坡面越陡.
3.方向角(或方位角)
指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.
4.解直角三角形中“双直角三角形”的基本模型:
解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.
5.解直角三角形实际应用的一般步骤
(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;
(3)选择合适的边角关系式,使运算简便、准确;
(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.
考向一 求三角函数的值
(1)分清直角三角形中的斜边与直角边.
(2)正确地表示出直角三角形的三边长,常设某条直角边长为k(有时也可设为1),在求三角函数值的过程中约去k.
(3)正确应用勾股定理求第三边长.
(4)应用锐角三角函数定义,求出三角函数值.
典例1 的值为
A. B. C. D.1
【答案】C
【解析】把sin45°=代入原式得:原式=2×=.故选C.
1.如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sinA的值为
A. B. C. D.
考向二 利用特殊角的三角函数值求值
锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.
典例2 已知∠A为锐角,且sinA=,那么∠A等于
A.15° B.30°
C.45° D.60°
【答案】D
【解析】∵sinA=,∴∠A=60°.故选D.
2.已知α是锐角,sinα=cos60°,则α等于
A.30° B.45°
C.60° D.不能确定
考向三 解直角三角形的应用
解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.
典例3 某山的山顶B处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC为30°,山高BC为100米,点E距山脚D处150米,在点E处测得观光塔顶端A的仰角为60°,则观光塔AB的高度是
A.50米 B.100米
C.125米 D.150米
【答案】A
【解析】如图,作EF⊥AC于F,EG⊥DC于G,在Rt△DEG中,EG=DE=75,
∴BF=BC-CF=BC-CE=100-75=25,EF==25,
∵∠AEF=60°,
∴∠A=30°,
∴AF==75,
∴AB=AF-BF=50(米),故观光塔AB的高度为50米,
故选A.
3.如图,某湖心岛上有一亭子,在亭子的正东方向上的湖边有一棵树,在这个湖心岛的湖边处测得亭子在北偏西方向上,测得树在北偏东方向上,又测得、之间的距离等于米,求、之间的距离(结果精确到米).
(参考数据:,,,,)
1.如图,在△ABC中,若∠C=90°,则
A.sinA= B.sinA=
C.cosA= D.cosA=
2.计算的值为
A. B. C. D.
3.在中,,,若,则的长为
A. B. C. D.
4.在Rt△ABC中,∠C=90°,,则cosA等于
A. B. C. D.
5.菱形ABCD的对角线AC=10cm,BD=6cm,那么tan为
A. B. C. D.
6.如图是边长为1的小正方形组成的网格图,其中点A,B,C均为格点,则sin∠BAC为
A. B. C. D.
7.在Rt△ABC中,∠C=90°,若AB=10,sinA=,则斜边上的高等于
A.5 B.4.8 C.4.6 D.4
8.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为
A. B. C. D.1
9.如图,某水库堤坝横截面迎水坡的坡度是,堤坝高为,则迎水坡面的是
A.
10.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置B处,海轮航行的距离AB长是
A.2海里 B.海里
C.海里 D.海里
11.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB的坡度为1∶2.4,AB长为3.9米,钓竿AC与水平线的夹角是60°,其长为4.5米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B之间的距离约为(参考数据:≈1.732)
A.1.732米 B.1.754米 C.1.766米 D.1.823米
12.如图,在Rt△ABC中,∠C=90°,BC=12,tanA=,则sinB=___________.
13.在△ABC中,AB=2,AC=,tan∠B=,则BC的长度为__________.
14.已知相邻的两根电线杆与高度相同,且相距.小王为测量电线杆的高度,在两根电线杆之间某一处架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为、,已知测角仪高,则电线杆的高度约为________.(精确到,参考数据:,,)
15.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=8,tan∠CBD=.
(1)求边AB的长;
(2)求cos∠BAE的值.
16.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强的身高为166cm,其中下半身FG=100cm,洗漱时下半身与地面成80°角(∠FGK=80°),身体前倾成125°角(∠EFG=125°),脚与洗漱台的距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小强的头部点E与地面DK的距离是多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1cm)
1.(2023年•天津)的值等于
A.1 B.
C. D.2
2.(2023年•怀化)已知∠α为锐角,且sinα=,则∠α=
A.30° B.45°
C.60° D.90°
3.(2023年·宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为
A. B.
C. D.
4.(2023年•广州)如图,有一斜坡AB,坡顶B离地面的高度BC为30 m,斜坡的倾斜角是∠BAC,若
tan∠BAC=,则此斜坡的水平距离AC为
A.75 m B.50 m
C.30 m D.12 m
5.(2023年•苏州)如图,小亮为了测量校园里教学楼的高度,将测角仪竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为,测得教学楼的顶部处的仰角为,则教学楼的高度是
A. B. C. D.
6.(2023年•广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
A.3.2米 B.3.9米
C.4.7米 D.5.4米
7.(2023年·杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于
A.asinx+bsinx B.acosx+bcosx
C.asinx+bcosx D.acosx+bsinx
8.(2023年•甘肃)在△ABC中,∠C=90°,tanA=,则cosB=__________.
9.(2023年•杭州)在直角三角形ABC中,若2AB=AC,则cosC=__________.
10.(2023年•天津)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.
11.(2023年•深圳)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).
12.(2023年•河南)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)
13.(2023年•甘肃)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)
14.(2023年•江西)图1是一台实物投影仪,图2是它的示意图,