温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
合肥市
第一
中学
2023
学年
高考
仿真
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )
A.1 B.2 C.-1 D.-2
2.下列函数中,既是奇函数,又是上的单调函数的是( )
A. B.
C. D.
3.已知实数满足线性约束条件,则的取值范围为( )
A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]
4.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )
A. B.
C. D.
5.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )
A. B. C. D.
6.若复数满足,则( )
A. B. C. D.
7.已知集合,则集合的非空子集个数是( )
A.2 B.3 C.7 D.8
8.已知集合,,则( )
A. B. C. D.
9.已知为锐角,且,则等于( )
A. B. C. D.
10.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
11.在中,角,,的对边分别为,,,若,,,则( )
A. B.3 C. D.4
12.下列四个结论中正确的个数是
(1)对于命题使得,则都有;
(2)已知,则
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;
(4)“”是“”的充分不必要条件.
A.1 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,对于任意都有,则的值为______________.
14.设复数满足,则_________.
15.如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.
16.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在直三棱柱中,,点分别为和的中点.
(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.
(Ⅱ)求二面角的余弦值.
18.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形.
(1)求椭圆的方程;
(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.
19.(12分)已知函数(,为自然对数的底数),.
(1)若有两个零点,求实数的取值范围;
(2)当时,对任意的恒成立,求实数的取值范围.
20.(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.
(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?
男生
女生
总计
喜欢阅读中国古典文学
不喜欢阅读中国古典文学
总计
(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望
附表及公式:.
21.(12分)已知函数.
(1)证明:当时,;
(2)若函数只有一个零点,求正实数的值.
22.(10分)已知函数.
(1)当时,判断在上的单调性并加以证明;
(2)若,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.
【题目详解】
因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.
【答案点睛】
本题主要考查圆的性质应用,几何性质的转化是求解的捷径.
2、C
【答案解析】
对选项逐个验证即得答案.
【题目详解】
对于,,是偶函数,故选项错误;
对于,,定义域为,在上不是单调函数,故选项错误;
对于,当时,;
当时,;
又时,.
综上,对,都有,是奇函数.
又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;
对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.
故选:.
【答案点睛】
本题考查函数的基本性质,属于基础题.
3、B
【答案解析】
作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.
【题目详解】
作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.
故选:B.
【答案点睛】
本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论.
4、D
【答案解析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.
【题目详解】
因为函数的最小正周期是,所以,即,所以,
的图象向左平移个单位长度后得到的函数解析式为,
由于其图象关于轴对称,所以,又,所以,所以,
所以,
因为的递增区间是:,,
由,,得:,,
所以函数的单调递增区间为().
故选:D.
【答案点睛】
本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.
5、A
【答案解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.
【题目详解】
由已知可得,,所以,从而双曲线方程为
,不妨设点在双曲线右支上运动,则,当时,
此时,所以,
,所以;
当轴时,,所以,又为锐角三
角形,所以.
故选:A.
【答案点睛】
本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.
6、B
【答案解析】
由题意得,,求解即可.
【题目详解】
因为,所以.
故选:B.
【答案点睛】
本题考查复数的四则运算,考查运算求解能力,属于基础题.
7、C
【答案解析】
先确定集合中元素,可得非空子集个数.
【题目详解】
由题意,共3个元素,其子集个数为,非空子集有7个.
故选:C.
【答案点睛】
本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.
8、D
【答案解析】
先求出集合B,再与集合A求交集即可.
【题目详解】
由已知,,故,所以.
故选:D.
【答案点睛】
本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.
9、C
【答案解析】
由可得,再利用计算即可.
【题目详解】
因为,,所以,
所以.
故选:C.
【答案点睛】
本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.
10、A
【答案解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【题目详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【答案点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.
11、B
【答案解析】
由正弦定理及条件可得,
即.
,
∴,
由余弦定理得。
∴.选B。
12、C
【答案解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.
【题目详解】
由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;
(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;
(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;
(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.
【答案点睛】
本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由条件得到函数的对称性,从而得到结果
【题目详解】
∵f=f,
∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.
∴f=±2.
【答案点睛】
本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.
14、.
【答案解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.
【题目详解】
∵复数满足,
∴,∴,
故而可得,故答案为.
【答案点睛】
本题考查了复数的运算法则,共轭复数的概念,属于基础题.
15、32π
【答案解析】
设ED=a,根据勾股定理的逆定理可以通过计算可以证明出CE⊥ED. AM=x,根据三棱锥的体积公式,运用基本不等式,可以求出AM的长度,最后根据球的表面积公式进行求解即可.
【题目详解】
设ED=a,则CDa.可得CE2+DE2=CD2,∴CE⊥ED.
当平面ABD⊥平面BCD时,当四面体C﹣EMN的体积才有可能取得最大值,设AM=x.
则四面体C﹣EMN的体积(a﹣x)a×xax(a﹣x),当且仅当x时取等号.
解得a=2.
此时三棱锥A﹣BCD的外接球的表面积=4