温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
大兴区
2023
学年
高考
数学
倒计时
模拟
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )
A. B. C. D.
2.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
3.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为( )
A. B.
C. D.
4.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为( )
A. B. C. D.
5.在的展开式中,的系数为( )
A.-120 B.120 C.-15 D.15
6.定义在上的奇函数满足,若,,则( )
A. B.0 C.1 D.2
7.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )
A. B. C. D.
8.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )
A. B. C. D.
9.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:
嘉宾
评分
嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是( )
A. B. C. D.
10.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( )
A. B. C. D.
11.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为
A.48 B.72 C.90 D.96
12.设,则复数的模等于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.根据如图所示的伪代码,输出的值为______.
14.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.
15.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.
16.已知,复数且(为虚数单位),则__________,_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.
(1)若|MN|=2,求抛物线E的方程;
(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.
18.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.
(1)求椭圆的方程;
(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.
19.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若关于的不等式的解集包含,求实数的取值范围.
20.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求的极坐标方程和的直角坐标方程;
(Ⅱ)设分别交于两点(与原点不重合),求的最小值.
21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程以及曲线的直角坐标方程;
(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.
22.(10分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.
(1)求椭圆的方程;
(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解
【题目详解】
先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,
故选:C
【答案点睛】
本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题
2、A
【答案解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【题目详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【答案点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.
3、C
【答案解析】
将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.
【题目详解】
依题意
,
则,
当时,,故函数在上单调递增,
当时,;
而函数在上单调递减,
故,
则只需,
故,解得,
故实数的取值范围为.
故选:C.
【答案点睛】
本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.
4、B
【答案解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.
【题目详解】
由题意易得平面,
所以,
当且仅当时等号成立,
又阳马体积的最大值为,
所以,
所以堑堵的外接球的半径,
所以外接球的体积,
故选:B
【答案点睛】
本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.
5、C
【答案解析】
写出展开式的通项公式,令,即,则可求系数.
【题目详解】
的展开式的通项公式为,令,即时,系数为.故选C
【答案点睛】
本题考查二项式展开的通项公式,属基础题.
6、C
【答案解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.
【题目详解】
由已知为奇函数,得,
而,
所以,
所以,即的周期为.
由于,,,
所以,
,
,
.
所以,
又,
所以.
故选:C
【答案点睛】
本小题主要考查函数的奇偶性和周期性,属于基础题.
7、C
【答案解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.
【题目详解】
由三视图可知,
几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,
侧棱长为,如图:
由底面边长可知,底面三角形的顶角为,
由正弦定理可得,解得,
三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,
所以,
该几何体外接球的表面积为:.
故选:C
【答案点睛】
本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.
8、B
【答案解析】
根据空余部分体积相等列出等式即可求解.
【题目详解】
在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.
故选:B
【答案点睛】
本题考查圆柱的体积,属于基础题.
9、C
【答案解析】
计算出、,进而可得出结论.
【题目详解】
由表格中的数据可知,,
由频率分布直方图可知,,则,
由于场外有数万名观众,所以,.
故选:B.
【答案点睛】
本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.
10、C
【答案解析】
根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.
【题目详解】
根据题意,分两种情况进行讨论:
①语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;
②语文和数学都一个安排在上午,一个安排在下午.
语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.
综上所述,共有种不同的排法.
故选:C.
【答案点睛】
本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.
11、D
【答案解析】
因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛
①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种
故答案为:96
点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.
12、C
【答案解析】
利用复数的除法运算法则进行化简,再由复数模的定义求解即可.
【题目详解】
因为,
所以,
由复数模的定义知,.
故选:C
【答案点睛】
本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、7
【答案解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.
【题目详解】
S=1,i=1
第一次循环:S=1+1=2,i=1+2=3;
第二次循环:S=2+3=5,i=3+2=5;
第三次循环:S=5+5=10,i=5+2=7;
S=10>9,循环结束,输出:i=7.
故答案为:7
【答案点睛】
本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.