分享
2023届黑龙江省哈尔滨九中高考数学四模试卷(含解析).doc
下载文档

ID:21869

大小:1.92MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 黑龙江省 哈尔滨 中高 数学四 试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ). A. B. C. D. 2.已知等比数列的各项均为正数,设其前n项和,若(),则( ) A.30 B. C. D.62 3.若x,y满足约束条件且的最大值为,则a的取值范围是( ) A. B. C. D. 4.在的展开式中,的系数为( ) A.-120 B.120 C.-15 D.15 5.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=(  ) A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2} 6.已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( ) A. B.2 C. D. 7.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( ) A. B. C. D. 8.已知函数的图象在点处的切线方程是,则( ) A.2 B.3 C.-2 D.-3 9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( ) A.1月至8月空气合格天数超过天的月份有个 B.第二季度与第一季度相比,空气达标天数的比重下降了 C.8月是空气质量最好的一个月 D.6月份的空气质量最差. 10.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( ) A.从2000年至2016年,该地区环境基础设施投资额逐年增加; B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多; C.2012年该地区基础设施的投资额比2004年的投资额翻了两番 ; D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 11.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为( ). A. B. C.或 D.或 12.已知复数在复平面内对应的点的坐标为,则下列结论正确的是( ) A. B.复数的共轭复数是 C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法. 14.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________. 15.已知实数,满足约束条件,则的最小值为______. 16.已知实数x,y满足,则的最大值为____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,. (Ⅰ) 证明:; (Ⅱ) 若为上的动点,求与平面所成最大角的正切值. 18.(12分)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合). (Ⅰ)证明:平面平面垂直; (Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由. 19.(12分)已知椭圆经过点,离心率为. (1)求椭圆的方程; (2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立. 20.(12分)设抛物线过点. (1)求抛物线C的方程; (2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值. 21.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接. (1)求证:平面; (2)求二面角的余弦值. 22.(10分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn< . 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【题目详解】 根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,, 平面,且, ∴,,,, ∴这个四棱锥中最长棱的长度是. 故选. 【答案点睛】 本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题. 2、B 【答案解析】 根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可. 【题目详解】 设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:, 因此. 故选:B 【答案点睛】 本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力. 3、A 【答案解析】 画出约束条件的可行域,利用目标函数的最值,判断a的范围即可. 【题目详解】 作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即. 故选:A 【答案点睛】 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键. 4、C 【答案解析】 写出展开式的通项公式,令,即,则可求系数. 【题目详解】 的展开式的通项公式为,令,即时,系数为.故选C 【答案点睛】 本题考查二项式展开的通项公式,属基础题. 5、D 【答案解析】 解一元二次不等式化简集合,再由集合的交集运算可得选项. 【题目详解】 因为集合 , 故选:D. 【答案点睛】 本题考查集合的交集运算,属于基础题. 6、C 【答案解析】 计算得到,,代入双曲线化简得到答案. 【题目详解】 双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,, 故,,故,代入双曲线化简得到:,故. 故选:. 【答案点睛】 本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 7、A 【答案解析】 联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果. 【题目详解】 由,得,所以,. 由题意知,所以,. 因为,所以,所以. 所以,所以, 故选:A. 【答案点睛】 本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题. 8、B 【答案解析】 根据求出再根据也在直线上,求出b的值,即得解. 【题目详解】 因为,所以 所以, 又也在直线上, 所以, 解得 所以. 故选:B 【答案点睛】 本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平. 9、D 【答案解析】 由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选. 10、D 【答案解析】 根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项. 【题目详解】 对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D. 【答案点睛】 本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题. 11、D 【答案解析】 先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可. 【题目详解】 构造函数, 则 由题可知,所以在时为增函数; 由为奇函数,为奇函数,所以为偶函数; 又,即 即 又为开口向上的偶函数 所以,解得或 故选:D 【答案点睛】 此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目. 12、D 【答案解析】 首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项. 【题目详解】 由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确. 故选:D 【答案点睛】 本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想. 二、填空题:本题共4小题,每小题5分,共20分。 13、24 【答案解析】 先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可. 【题目详解】 解:每地一名医生,3名护士的选派方法的种数有, 若甲乙两名护士到同一地的种数有, 则甲乙两名护士不到同一地的种数有. 故答案为:. 【答案点睛】 本题考查利用间接法求排列组合问题,正难则反,是基础题. 14、 【答案解析】 分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可. 【题目详解】 刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为. 故答案为: 【答案点睛】 本题主要考查了分类方法求解事件概率的问题,属于基础题. 15、 【答案解析】 作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案. 【题目详解】 作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故 由题可知,联立得,联立得 所以,故 所以的最小值为 故答案为: 【答案点睛】 本题考查分式型目标函数的线性规划问题,属于简单题. 16、1 【答案解析】 直接用表示出,然后由不等式性质得出结论. 【题目详解】 由题意, 又,∴,即, ∴的最大值为1. 故答案为:1. 【答案点睛】 本题考查不等式的性质,掌握不等式的性质是解题关键. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(Ⅰ)见解析;(Ⅱ). 【答案解析】 试题分析:(Ⅰ)由底面为边长为2的菱形,平面,,易证平面,可得;(Ⅱ)连结,由(Ⅰ)易知为与平面所成的角,在中,可求得. 试题解析:(Ⅰ)∵ 四边

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开