分享
云南省玉溪第二中学2023学年高考冲刺押题(最后一卷)数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 玉溪 第二 中学 2023 学年 高考 冲刺 押题 最后 一卷 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( ) A. B. C.0 D. 2.设是等差数列的前n项和,且,则( ) A. B. C.1 D.2 3.在区间上随机取一个实数,使直线与圆相交的概率为( ) A. B. C. D. 4.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( ) A. B. C. D. 5.由曲线y=x2与曲线y2=x所围成的平面图形的面积为(  ) A.1 B. C. D. 6.( ) A. B. C.1 D. 7.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是( ) A.该年第一季度GDP增速由高到低排位第3的是山东省 B.与去年同期相比,该年第一季度的GDP总量实现了增长 C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个 D.去年同期浙江省的GDP总量超过了4500亿元 8.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( ) A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 9.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( ) A. B. C.2 D.4 10.是的( )条件 A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要 11.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于( ) A. B. C. D. 12.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知角的终边过点,则______. 14.函数过定点________. 15.函数的定义域是___________. 16.已知非零向量的夹角为,且,则______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)椭圆:的离心率为,点 为椭圆上的一点. (1)求椭圆的标准方程; (2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值. 18.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低? 19.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量. 20.(12分)设函数. (1)当时,求不等式的解集; (2)若存在,使得不等式对一切恒成立,求实数的取值范围. 21.(12分)已知函数 (1)求f(x)的单调递增区间; (2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积. 22.(10分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点. (1)求异面直线AP,BM所成角的余弦值; (2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可. 【题目详解】 记圆的圆心为,设,则,设,记,则 ,令, 因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立). 故选:C 【答案点睛】 此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题. 2、C 【答案解析】 利用等差数列的性质化简已知条件,求得的值. 【题目详解】 由于等差数列满足,所以,,. 故选:C 【答案点睛】 本小题主要考查等差数列的性质,属于基础题. 3、D 【答案解析】 利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率. 【题目详解】 由于直线与圆相交,则,解得. 因此,所求概率为. 故选:D. 【答案点睛】 本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题. 4、B 【答案解析】 ,将,代入化简即可. 【题目详解】 . 故选:B. 【答案点睛】 本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题. 5、B 【答案解析】 首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可. 【题目详解】 联立方程:可得:,, 结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为: . 本题选择B选项. 【答案点睛】 本题主要考查定积分的概念与计算,属于中等题. 6、A 【答案解析】 利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果. 【题目详解】 ,, 因此,. 故选:A. 【答案点睛】 本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题. 7、D 【答案解析】 根据折线图、柱形图的性质,对选项逐一判断即可. 【题目详解】 由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的 省份有江苏均第一.河南均第四.共2个.故C项正确;. 故D项不正确. 故选:D. 【答案点睛】 本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题. 8、A 【答案解析】 依题意有的周期为.而,故应左移. 9、A 【答案解析】 由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率. 【题目详解】 解:设双曲线的半个焦距为,由题意 又,则,,,所以离心率, 故选:A. 【答案点睛】 本题考查双曲线的简单几何性质,属于基础题 10、B 【答案解析】 利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。 【题目详解】 设对应的集合是,由解得且 对应的集合是 ,所以, 故是的必要不充分条件,故选B。 【答案点睛】 本题主要考查充分条件、必要条件的判断方法——集合关系法。 设 , 如果,则是的充分条件;如果B则是的充分不必要条件; 如果,则是的必要条件;如果,则是的必要不充分条件。 11、A 【答案解析】 首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值. 【题目详解】 由题知是等腰直角三角形且,是等边三角形, 设中点为,连接,,可知,, 同时易知,, 所以面,故即为与面所成角, 有, 故. 故选:A. 【答案点睛】 本题主要考查了空间几何题中线面夹角的计算,属于基础题. 12、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值. 【题目详解】 解:∵角的终边过点, ∴,, ∴, 故答案为:. 【答案点睛】 本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题. 14、 【答案解析】 令,,与参数无关,即可得到定点. 【题目详解】 由指数函数的性质,可得,函数值与参数无关, 所有过定点. 故答案为: 【答案点睛】 此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间. 15、 【答案解析】 由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案. 【题目详解】 解:由题意得, ,解得, 所以, 故答案为: 【答案点睛】 此题考查函数定义域的求法,属于基础题. 16、1 【答案解析】 由已知条件得出,可得,解之可得答案. 【题目详解】 向量的夹角为,且,,可得:,  可得, 解得, 故答案为:1. 【答案点睛】 本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)证明见解析 【答案解析】 (1)运用离心率公式和点满足椭圆方程,解得,,进而得到椭圆方程;(2)设直线,代入椭圆方程,运用韦达定理和直线的斜率公式,以及点在直线上满足直线方程,化简整理,即可得到定值. 【题目详解】 (1)因为,所以, ① 又椭圆过点, 所以 ② 由①②,解得 所以椭圆的标准方程为 . (2)证明 设直线:, 联立得, 设, 则 易知 故 所以对于任意的,直线的斜率之积为定值. 【答案点睛】 本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和直线的斜率公式,化简整理,考查运算能力,属于中档题. 18、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低 【答案解析】 设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解. 【题目详解】 设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元, 由题意可知,, 整理得, 目标函数, 如图所示,为不等式组表示的可行域, 由图可知,当直线经过点时,最小, 解方程组,解得,, 然而,故点不是最优解. 因此在可行域的整点中,点使得取最小值, 即, 故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低. 【答案点睛】 本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题. 19、另一个特征值为,对应的一个特征向量 【答案

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开